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ABSTRACT 
 
Image spam is a new obfuscating method which spammers 
invented to more effectively bypass conventional text based 
spam filters. In this paper, a framework for filtering image 
spams by using the Fourier-Mellin invariant features is 
described. Fourier-Mellin features are robust for most kinds 
of image spam variations. A one-class classifier, the support 
vector data description (SVDD), is exploited to model the 
boundary of image spam class in the feature space without 
using information of legitimate emails. Experimental results 
demonstrate that our framework is effective for fighting 
image spam. 
 

Index Terms—Image spam, Fourier-Mellin Transform, 
one-class classification
 

1. INTRODUCTION 
 
Email spam, also known as unsolicited bulk e-mail or junk 
e-mail has become a scourge for us who just want to 
peacefully receive and send email. Many spam-thwarting 
programs have been developed that inspect words, phrases, 
mailing histories, IP addresses, and other aspects of an 
email. Just as the classic battle of virus and antivirus, 
spammers explore new technologies in an effort to keep one 
step ahead of spam filters. Spammers' latest obfuscating 
method involves image spam, in which the main payload of 
the spam message is carried as an embedded image. Usually, 
the body of image spam contains no text or only bogus text, 
and the conventional text based spam filters therefore failed 
to detect and block it. Most of spams that break through the 
authors’ personal anti-spam defences are image spams. 
Meanwhile, image spam can be more fascinating and 
convincing than text alone. Image spam is reported 
accounting for roughly 40 percent of all spam traffic now, 
and is still on the rise. 

In recent years, many academic researchers and 
software security companies have turned their attention to 
investigating more constructive technologies to filter image 
spam. Fumera et al. [1] proposed an approach which 
exploited commercial OCR software to extract text 
embedded into images and then employed text 
categorization techniques to filter image spam. Several OCR 
plug-ins are also available for SpamAssassin which is a 
famous open-source spam filter. However, it now seems that 

spammers have changed their strategies. They add random 
dots or short lines to the background of image and apply 
similar CAPTCHA techniques to mislead image OCR tools. 
So far, very little work has been done to address this 
challenge. Approaches mainly differ in the set of features 
used to represent the image spam. Biggio et al. [2] used a 
low-level image feature perimetric complexity to detect 
whether content obscuring techniques were used, and 
considered that images which were obscured in a way aimed 
to fool OCR were likely to be spam. Dredze et al. [3] 
established a fast image spam detection system which used 
simple image features like file format, file size, image 
metadata, average color etc. Since most of image spams 
contain text, Wu et al. [4] and Aradhye et al. [5] mainly 
extracted embedded text features combined with other 
features such as color distribution or image location and 
trained a SVM classifier to discriminate spam images from 
legitimate ones. 

 

 
Figure 1. Samples of different kinds of image spam. 
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From the image spams we collected, we have noticed 
that the image spams have the following characteristics: 

Repetitiousness: Spammers tend to send the identical 
content many times to the same email account. 
Variability: To circumvent simple signature-based 
anti-spam filters, spammers usually produce many 
variations for a template image spam. The tricks of 
making image variations include: translation, rotation, 
scaling, local changes and adding random noises etc. 
Figure 1 shows the samples of different kind of image 
spam variations. 
Commonness: Most of image spams contain embedded 
text. 

Based on above observation, in this paper, the Fourier-
Mellin invariant descriptor which has been widely used in 
watermark detection and fingerprint verification systems [6] 
is adopted. Fourier-Mellin Transform (FMT) is a translation, 
scaling and rotation invariant function and performs well 
under noise. Figure 2 shows our framework of detecting 
image spam. The input image is first transformed from 
spatial domain to frequency domain by using a Fast Fourier 
Transform (FFT), and then is converted from Cartesian 
coordinates to Log-Polar coordinates. A second FFT, called 
the Mellin Transform (MT) gives the Fourier-Mellin 
invariant matrix, and the matrix is then stretched into a 1D 
vector by row concatenation. The Principal Components 
Analysis (PCA) is performed to project the vectors into a 
low-dimensional space. The final stage takes a one-class 
SVM algorithm to distinguish spam images from legitimate 
ones. Our framework makes sure that the final vectors 
extracted from image spam keep constant or change slightly 
for most image spam variations of a template. 
 

 
Figure 2. Overview of our framework. 

 
The remainder of this paper is organized as follows: 

Section 2, 3 introduce the image spam feature extraction 
method and the one-class SVM classifier respectively. 
Section 4 demonstrates experimental results. Section 5 
summarizes this paper. 

2. IMAGE SPAM FEATURE EXTRACTION 
 
In this paper, we extract Fourier-Mellin invariant features as 
the low-level image feature. In the following, we will 
demonstrate the translation, scaling and rotation invariant 
characteristics of Fourier-Mellin Transform. 

Consider an image g(x, y) that is a rotated, scaled and 
translated replica of f(x, y), 

0 0( , ) [ ( cos sin ) , ( sin cos ) ]  (1)g x y f x y x x y y

where  is the rotation angle,  the uniform scale factor, and 
x0 and y0 are translational offsets. The Fourier Transform of 
f(x, y) and g(x, y) are related by 

( , ) 2 1 1( , ) [ [ ( cos sin ), ( sin cos )]]  (2)sj u vG u v e F u v u v  
where s(u, v) is the spectra phase of the image g(x, y). This 
phase depends on the translation, scaling and rotation, but 
the spectral magnitude 

2 1 1| ( , ) | | [ ( cos sin ), ( sin cos )] |   (3)G u v F u v u v  
is translation invariant. 

Equation (3) shows that a rotation of the image rotates 
the spectral magnitude by the same angle, and that a scaling 
by  scales the spectral magnitude by -2. Rotation and 
scaling can be decoupled by defining the spectral 
magnitudes of f and g in the polar coordinates ( , r), 

( , ) | ( cos , sin |, ( , ) | ( cos , sin ) |   (4)p pg r G r r f r F r r  
By applying some appropriate trigonometry identities, one 
can obtain 

2( , ) ( , / )                        (5)p pg r f r  

Hence an image rotation shifts the function fp( , r) along the 
angular axis. A scaling is reduced to a scaling of the radial 
coordinate and to a magnification of the intensity by a 
constant factor 2. Scaling can be further reduced to a 
translation by using a logarithmic scale for the radial 
coordinate, thus 

2( , ) ( , ) ( , )                (6)pl p plg g r f  

where,  = log(r) and  = log( ). In this polar-logarithmic 
representation, both rotation and scaling are reduced to 
translation. By Fourier transforming the polar-logarithm 
representations, (6), 

2 2 ( )( , ) ( , )                       (7)j
pl plG e F  

where rotation and scaling now appear as phase shifts, and 
thus the normalized spectral magnitude is translation, 
scaling and rotation invariant. This technique decouples 
images rotation, scaling and translation, and can be 
computed efficiently by using Fast Fourier Transform [6] 
[7].  

The resulting Fourier-Mellin feature is a M×N matrix 
where M and N are scale and angle resolution of the log-
polar coordinate respectively and is stretched into a 1D 
vector of size H= M×N by row concatenation. The Principal 
Components Analysis (PCA) defines a transformation from 
RH to a lower dimensional space RL, L<H, defined by 
z=WT(x-μ), where μ is the sample mean. The column vectors 
of W are the L eigenvectors of the covariance matrix with 
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largest eigenvalues. The result is a set of low dimensional 
vectors and is used to train our one-class SVM classifier. 
 

3. THE ONE-CLASS SVM CLASSIFIER 

One-class classification is a special type of two-class 
classification problem, where each of the two classes has a 
special meaning: the target class and the outlier class. The 
target class is assumed to be well sampled, and the training 
data reflect the area that the target data cover in the feature 
space, while the outlier class can be sampled very sparsely, 
or can be totally absent [8][10]. Spam filtering is a typical 
example of a problem of this type. While the spam dataset is 
easily accessible, a representative set of legitimate emails is 
difficult to collect, due to privacy concerns. 

Schölkopf et al. [9] proposed an approach which is 
called the -support vector classifier ( -SVC) and used a 
hyperplane to separate the target objects from the origin 
with maximal margin. Tax and Duin [8] proposed another 
approach which is called the support vector data description 
(SVDD) and used a hypersphere (which has a closed 
boundary) to contain all training objects. When all data is 
normalized to unit norm vectors, the SVDD is equivalent to 
the -SVC. In this paper the SVDD and DDtools [8][10] are 
used to model the image spam class.  

Given a set of training target set {xi}, i=1,…,N, the 
SVDD defines a model which gives a closed boundary 
around the data: an hypersphere. The sphere is characterized 
by center a and radius R and contains all training objects xi. 
The structural error which has to be minimized is: 

2( , )                                                    (8)F R a R                                       
subject to constraints: 

2 2 ,                                              (9)ix a R i  

To allow the possibility of outliers in the training set, slack 
variables i  0 are introduced and the minimization 
problem changes into: 

2( , )                                      (10)i
i

F R a R C  

subject to constraints that almost all objects are within the 
sphere: 

2 2 ,    0,                         (11)i i ix a R i  

The parameter C gives the tradeoff between the volume of 
the description and the errors. By introducing Lagrange 
multipliers i 0 and i 0 the following Lagrangian is 
derived: 

2

2 22

( , , , , )

                  { ( 2 )}    (12)

i i i i
i

i i i i i i
i i

L R a R C

R x a x a

 

For each object xi a corresponding i and i are defined. L 
has to be minimized with respect to R, a and i, and 
maximized with respect to i and i. By setting partial 
derivatives to zero gives the constraints: 

1                                                (13)i
i

 

                                            (14)i i
i

a x  

0 ,                                         (15)i C i  
Resubstituting (13)-(15) into (12) results in: 

,
( ) ( )                   (16)i i i i j i j

i i j

L x x x x  

Maximizing (16) gives a set i. Equation (14) shows that the 
center of the sphere is a linear combination of the objects 
with weights i. Only objects xi with positive weight i>0 
are needed in the description of the data set and these 
objects are called the support vectors (SVs). SVs lie on the 
boundary (if 0< i<C) or outside the boundary (if i=C) of 
the sphere. 

A test object z is accepted as a target object when it is 
inside or on the boundary of the description: 

2 2

,

( ) 2 ( ) ( )     (17)i i i j i j
i i j

z a z z z x x x R  

R2 is the squared distance from the center of the sphere to 
one of the SVs on the boundary: 

         2

,

( ) 2 ( ) ( )     (18)k k i i k i j i j
i i j

R x x x x x x  

As in all formulae (Equations (16), (17) and (18)) 
objects xi only appear in the form of inner products with 
other objects, the inner products can be replaced by a kernel 
function K(xi, xj) = ( (xi) (xj)) to obtain a more flexible 
data description. Several kernel functions can be used, such 
as the polynomial kernel and the Gaussian kernel. An ideal 
kernel function would map the target data onto a bounded, 
spherically shaped area in the feature space and outlier 
objects outside this area.  In our framework, we used an 
incremental version of SVDD which was adapted to cope 
with dynamically changing data. When new spams come, 
we needn’t  make recalculation of the entire classifier. 
 

4. EXPERIMENTS 
 
Two corpora of image spam were used in our experiments. 
One was our personal corpus and the other was the public 
SpamArchive corpus which used by Giorgio Fumera et al. 
[1] and Mark Dredze et al. [3]. Our personal corpus was 
made up of 1,712 images, which were collected from 
October 2005 to November 2007 in the authors’ personal 
mailboxes and 11,256 valid images were extracted from the 
SpamArchive corpus. 

To evaluate the false positive rates, the legitimate 
image email (also called non-spam or ham) corpus is needed. 
Note that our one-class classifier is able to work, solely on 
the basis of spam corpus. However, the legitimate image 
email corpus is difficult to collect due to the following 
reasons: 

Legitimate emails containing images are much rarer 
than spam ones.  
Legitimate emails usually contain personal information, 
and it is not easy to distribute them. 

Instead, we chose to use two subsets of Caltech-256 
(www.vision.caltech.edu) as non-spam corpora for our 
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experiments. The Caltech-256 contains 30,608 images of 
257 Categories. We randomly selected 10 images per 
category, and our first subset contained 2570 images. The 
second subset contained 15,304 images, and about half 
images were selected each category. The fist subset was 
used to evaluate the false positive rates of the classifier 
trained by our personal image spam corpus, and the second 
subset was used to evaluate the false positive rates of the 
classifier trained by the SpamArchive corpus. The datasets 
are summarized in Table1. 

 
Table 1. A summary of our datasets. 

Experiments Corpus Number
of Images

Experiment 
I 

Personal Spam 1712 
Caltech-256 Subset I 2570 

Experiment 
II 

SpamArchive Spam 11256 
Caltech-256 Subset II 15304 

 
We assessed our method by using 10-fold cross-

validation. The spam corpus was randomly divided into 10 
folds, and one fold was left together with the non-spam 
corpus as the test set and the other folds were used for 
training. The experiment was repeated 10 times, and the 
classification result is calculated by averaging over 10 runs. 

 
Table 2. Experimental results. 

Experiments Precision Recall F1
Experiment I 98.92% 83.65% 90.64% 
Experiment II 98.74% 78.60% 87.53% 

 
By adjusting the kernel parameters and the predefined 

target rejection rate on the training set, we have gained a 
high precision and an acceptable recall. This is because that 
most users would rather receive more spams than lose a 
useful legitimate email. 

Our algorithm is very fast, the Fourier-Mellin invariant 
features can be computed efficiently by using twice Fast 
Fourier Transform (FFT). The average time to classify an 
image is 190 milliseconds on our personal computer. 

It is not easy to compare other previously proposed 
techniques with our proposed algorithm directly due to 
different datasets and measures that were used. Table 3 
shows the performance of [5]. The detection rate is 
equivalent to the recall measure that we used. The spam 
dataset SPAM-1 and SPAM-2 which they used contained 
497 and 1245 images respectively, and the legitimate 
images were collected from Google Image Search. 

 
Table 3. Experimental results [5]. 

Dataset Detection  
Rate 

False
Positive 

SPAM-1 76.25% 6.5% 
SPAM-2 82.75% 17.25% 

5. CONCLUSIONS 
 
A framework for filtering image spams by using the 
Fourier-Mellin invariant features is presented in this paper. 
Fourier-Mellin features are robust for most kinds of image 
spam variations. The SVDD classifier can distinguish spam 
images from legitimate ones efficiently solely on the basis 
of spam corpus. Experimental results demonstrate that our 
framework is effective for fighting image spam. 
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