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ABSTRACT

In this paper, we address the problem of super-resolution from
multiple low-resolution omnidirectional images with inexact
registration. Such a problem is typically encountered in om-
nidirectional vision scenarios with reduced resolution sensors
in imperfect settings. Several spherical images with arbitrary
rotations in the SO(3) rotation group are used for the recon-
struction of higher resolution images. We propose an l1 regu-
larized total least squares normminimization method for joint
registration and reconstruction with better stabilization and
denoising. Experimental results show that regularization of-
fers a quality improvement of up to 1dB. In addition, it re-
duces the number of low resolution images that are necessary
to reconstruct a high resolution image at a target quality.

Index Terms— Super-resolution, omnidirectional im-
ages, spherical Fourier Transform, l1 regularization

1. INTRODUCTION

Image super-resolution typically describes the reconstruction
of high-resolution images from multiple low-resolution im-
ages that are produced by imperfect vision sensors. Super-
resolution is however an ill-defined inverse problem leading
often to unstable systems, especially in the case where images
are not perfectly registered. Regularization has been proved
to be useful to increase the stability of such systems. For ex-
ample, Tikhonov and total variation (TV) algorithms are two
common regularizationmethods using l2 and l1 norms respec-
tively in order to improve the performance and compensate
for some small registration errors.
In this work, we address the problem of super-resolution

of omnidirectional images mapped on the unit sphere (e.g., as
captured by catadioptric systems [1]). We propose an l1 reg-
ularized least-squares method that jointly estimates the reg-
istration errors and reconstructs high resolution images from
low resolution spherical images with arbitrary rotations in the
SO(3) rotation group. We represent registration and sam-
pling problem with the help of the Spherical Fourier Trans-
form (SFT), which permits to formulate a least-squares norm

minimization with l1 norm regularization in the transform do-
main. The formulation of the problem in the transform do-
main simplifies the handling of registration errors, and further
it permits the use of methodologies developped for denoising.
The solution of our optimization problem provides effective
approximation of spherical images even with relatively large
registration errors on the low resolution images. Experimen-
tal results with images of different resolutions demonstrate
the validity of the proposed solution and the benefit of the
regularization term for super-resolution in omnivision appli-
cations.
Super-resolution has been an active field of research, and

efficient solutions have been proposed when planar images
are perfectly registered [2, 3]. Similar approaches have been
proposed for registered omnidirectional images [4, 5], where
the true geometry of these particular images is however left
unexploited. Some recent works have further addressed the
joint problem of registration of low resolution images and
super-resolution reconstruction of images from perspective
cameras. For example, researchers have proposed techniques
based on subspace methods and projection theorem [6], alter-
nating minimization [7], or structured nonlinear total least-
squares norm [8] with a total variation regularization step
in the pixel domain. Unfortunately, none of these solutions
can be easily adapted to omnidirectional images that present
a very specific geometry. Finally, it should be noted that l1
regularization techniques have received quite some attention
in emerging fields like compressed sensing. While it nicely
extends to super-resolution, the l1 regularized least-squares
problem generally does not consider inexact system matrices,
which happen for unregistered images.

2. SUPER-RESOLUTION ON THE SPHERE

Image super-resolution is an inverse problem which is the re-
construction of an high-resolution image, X from multiple
low-resolution input images, z . Typically, the low-resolution
image formation is modeled as

z = DTX + nz (1)
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where nz is additive noise, D and T are downsampling and
transformation operators, respectively.
In this work, we consider several low resolution omni-

directional images that are mapped on the sphere in order
to preserve the geometry of the scene. Formally, we denote
by X(θ, φ) a square-integrable continuous signal lying on 2-
sphere, S2 where θ is the longitude angle in the range [0, π]
and φ is the colatitude angle defined in [−π, π) that forms an
equiangular grid. We assume that we haveQ such signals that
represent L × L low resolution images with different orien-
tations in SO(3). Let gk = gZY Z(αk, βk, γk) denote a non-
commutative rotation operator in the rotation group SO(3).
It describes the orientation of kth spherical image, so that the
point ν(θ, φ) corresponds to gkν in the kth image. When
points on the low-resolution images are registered on the high
resolution sphere using the rotation operator gk, it produces
an interlaced sampling scheme, illustrated in Figure 1.

Fig. 1: Non-uniform sampling grid formed by registration of
low resolution images with different orientations. Polar re-
gions of low res. images can be observed on the grid.

Note that neither downsampling nor transformation can
be directly performed on the image pixels by linear operators
on spherical images. We therefore move to the transform do-
main and use spherical Fourier transform (SFT) to model both
sampling and rotations in transform domain. The spherical
image,X(θ, φ), can be decomposed into a series of spherical
harmonics using discrete SFT as:

X(θ, φ) =
∑
l∈N

∑
|m|≤l

x̂(l, m)Y m
l (θ, φ), (2)

where Y m
l (θ, φ) is the spherical harmonic of degree l, order

m and x̂(l, m) is the corresponding Fourier coefficient. When
X(θ, φ) is bandlimited to B, it can be perfectly reconstructed
from uniformly sampled data on a 2B × 2B equiangular grid
[9]. However, we do not have a uniformly sampled set of data
after registration, but rather a set of intensity valuesX(ν) that
can be written as

X(ν) =

N−1∑
l=0

∑
|m|≤l

a(l, m)Y m
l (ν). (3)

where a(l, m) ≈ x̂(l, m) are now the Fourier coefficients that
have to be estimated. If V l(ν) is a (2l + 1)-tuple column
vector in the form

Vl(ν) =
[

Y −l
l (ν)T · · ·Y 0

l (ν)T · · ·Y l
l (ν)T

]T
, (4)

and V is B2-tuple vector formed by concatenation of Vl for
l = 0 . . . (B − 1), we can equivalently write the following
linear system of equations:

M · a = z (5)

where

M = {V(ν)}QL2×B2

a = {a(l, m)}B2×1

z = {X(ν)}QL2×1

(6)

The solution of this linear system for the coefficients a(l, m) ≈
x̂(l, m) finally permits to reconstruct the high-resolution im-
age by inverse Spherical Fourier Transform.
Interestingly enough, rotations in SO(3) can also be ex-

plicitly represented in Spherical Fourier domain. In partic-
ular, the spherical harmonic Y n

l (gν) for a rotated sampling
point ν by g can be related to Y m

l (ν) by

Y n
l (gν) =

l∑
m=−l

U l
mn(g)Y n

l (ν) (7)

where U l
mn(g) is the elements of Wigner-D matrix [10]. Note

that the data matrix,M, is now a function of the rotation val-
ues. If we select the first images as reference, and form a vec-
tor b by concatenation of the rotation angles of each image,
M can be written as

M(b) =

[
W1

W(b)

]
(8)

whereW1 is the set of spherical harmonics for the first image
whileW is the set of spherical harmonics of the other images
as a function of the rotation vector b.

3. L1 REGULARIZED SUPER-RESOLUTION WITH
UNREGISTERED IMAGES

We consider now the problem where the low-resolution im-
ages are not perfectly registered. In other words, the rotation
vector b is not exact and needs to be estimated together with
the transform coefficient vector a, which makes the overall
system nonlinear. In [11], we proposed a least-squares based
method to jointly estimate the rotation parameters and the
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Fourier coefficients. We propose here to exploit the sparsity
of the Fourier coefficients in order to achieve a better denois-
ing performance on both intensity and rotation values. We
therefore add an l1 regularization term to the least squares
cost function, and the optimization problem becomes

argmin
a,b

[
‖M(b)a− z‖

2

2
+ λ‖a‖1

]
. (9)

As the regularization term is not differentiable, the Newton-
based methods cannot be applied directly. As proposed in
[12], the minimization problem is converted into

min

[
‖M(b)a− z‖

2

2
+ λ

∑
i

ui

]

s.t. − ui < ai < ui

(10)

where ui > 0. The inequality constraint is added to the cost
function via a logarithmic barrier function to form

min

[
‖M(b)a− z‖

2

2
+ λ

∑
i

ui + tφ(u,a)

]
. (11)

The barrier function φ(., .) for complex variables is selected
as

φ(u,a) = −
∑

i

log(u2

i −Re(ai)
2 − Im(ai)

2). (12)

The new cost function is now differentiable. For derivation,
however, the other elements of the system should be real-
valued too. By using the method presented in [12] we con-
vert the complex valued matrices and vectors into real-valued
ones and denote them with .̃ for the rest of the paper. After
the conversion and the linearization of the square norm part
of the cost function, the search direction for the minimization
is found by solving

H

⎡
⎣ Δb

Δx̃

Δu

⎤
⎦ = −g (13)

whereH is the Hessian matrix and g is the gradient.
Note that the calculation of Hessian for registration pa-

rameters is computationally expensive. Thus, the components
of the Hessian matrix corresponding to the registration param-
eters are approximated by first-order derivatives. The approx-
imated Hessian matrix is

H ≈

⎡
⎣ J̃TJ̃ + LI J̃TW̃ 0

W̃TJ̃ D1 D2

0 D3 D4

⎤
⎦ . (14)

where J̃ is the Jacobian of the cost function with respect to b̃

and LI is the regularization term proposed in [11] for regis-
tration parameters. The term[

D1 D2

D3 D4

]
(15)

is the Hessian with respect to the x̃ and ũ.
At each iteration, the b, x and u are updated by solving

the system for the step direction and incrementing them by
Δb, Δx, and Δu until maximum number of iterations are
reached or increments are less than a threshold.

4. EXPERIMENTAL RESULTS

We have tested the proposed algorithm on multiple 16 × 16
low-resolution spherical images to reconstruct a 64 × 64 im-
age. We use synthetic images in the experiments, since they
provide groundtruth information for performance evaluation,
as well as control on the registration parameters. The parame-
ters of the optimization problem have been fixed λ = t = 10.
The first experiment compares the proposed algorithm

with a typical l2 regularization [12] and a super-resolution
algorithm without regularization constraint [11]. Figure 2
shows the results for a registration error of 10 degrees. The
methods are applied for 5 different registration errors picked
from a uniform distribution with 10 degrees maximum. Both
l1 and l2 regularization provide improved image quality but
l1 has better improvement and provided up to 1dB quality
improvement. In addition, we can observe that, for the quality
obtained around the saturation point, one could remove 20
images compared to a scheme without regularization [11].
Figure 3 illustrates the performance of the algorithm for

different values of the maximum error on the rotation param-
eter. It shows that the proposed method is able to correct er-
rors up to 15 degrees on the registration parameters, when the
number of low resolution images is sufficient.
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Fig. 2: Comparison of the effect of different regularization
terms.

We have also tested the robustness of the proposedmethod
to noise in the low resolution images. We have applied
white gaussian noise such that the SNR is 30dB for the
low-resolution images. As shown in Figure 4, the proposed
method is quite robust to noise. It is able to correct reg-
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Fig. 3: Performance of the regularized super-resolution
method for different registration errors.

istration errors as well as to provide a good reconstruction
quality.1
Computation of J and W are the most computationally

demanding parts of the algorithm, however, spherical har-
monics have recursion property and this can be exploited for
faster computations. S2kit [13] software kit provides faster
computation of the harmonics exploiting this property and
FFT. In addition, iterative methods to solve the system can
be used to reduce the memory load.
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Fig. 4: Performance of the proposed method for noisy low-
resolution images.

5. CONCLUSION

We proposed a method to solve l1 regularized least-squares
problem with inexact system matrices that represents the

1The low-resolution images and generated high resolution images are
available at http://lts4www.epfl.ch/˜arican/research.php.

super-resolution from multiple low-resolution omnidirec-
tional images with arbitrary rotations in SO(3) rotation group
with only coarse approximation of the rotation parameters.
The experimental results show that the proposed method effi-
ciently reconstructs the high-resolution image while correct-
ing the registration errors due to the regularization constraint.
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