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ABSTRACT

We investigate how to effectively incorporate spatial

structure information into histogram features for boosting

visual classification performance motivated by recently pro-

posed Markov Stationary Features (MSF). First, we show

that due to the symmetric property of the image occurrence

modeling procedure, the stationary distribution derived from

the normalized co-occurrence matrix has a trivial informa-

tive solution which only approximates the original histogram

representation, i.e., does not encode proper spatial struc-

ture information. To eliminate this ambiguity, we propose

in this work the so called Directed Markov Stationary Fea-

tures (DMSF) to encode spatial information into histogram

features, and the asymmetric essence of the co-occurrence

matrices in DMSF avoids the trivial informative solutions in

MSF. Extensive experiments on face recognition show the

significant performance improvement brought by our pro-

posed DMSF.

Index Terms— Visual classification, Markov Stationary

Features, Directed Markov Stationary Features

1. INTRODUCTION

Histogram representations are widely used in computer vision

and multimedia communities for visual classification, content

based image retrieval, and video content analysis. The in-

ability of conventional histogram features to convey spatial

structure information, however, greatly limits their discrim-

inating power. Layout histograms and multi-resolution his-

tograms [1] are the pioneering attempts to incorporate spatial

structure information for improving the discriminating capa-

bility of histogram features. Instead of the indirect use of spa-

tial information, coherence vector [2] and auto-correlogram

[3] were proposed to encode local spatial structure informa-

tion directly into histograms. Recently, Li et al. [4] intro-

duced the spatial co-occurrence matrix based Markov chain

model to encode the intra-bin and inter-bin relationships into

histograms, where the initial and stationary distributions of

the Markov chain model are combined to form the so-called

Markov Stationary Features (MSF).

For MSF, we prove in this paper that there exists an in-

formative trivial solution for the stationary distribution, given

that the co-occurrence modeling of the image is symmetric,

i.e., the co-occurrence matrix is symmetric. Under this condi-

tion, we show that the trivial solution is the normalized vector,

where each element corresponds to the row sum of the spatial

co-occurrence matrix. It means that this trivial solution only

approximates the original histogram representation, and can-

not effectively encode the spatial information. To eliminate

this ambiguity as well as to boost the visual classification per-

formance, we propose to compute the so called directed co-

occurrence matrices, and a set of MSFs are calculated based

on these asymmetric matrices. This new encoding frame-

work is referred to as Directed Markov Stationary Features
(DMSF). The direct advantages of DMSF over MSF include:

1) It avoids the trivial solution in MSF; 2) It effectively en-

codes the directional spatial context information.

The rest of this paper is organized as follows. Section 2 re-

visits the previous proposed Markov Stationary Features and

theoretically shows its inherent drawback. In Section 3 we

present the Directed Markov Stationary Features to address

the problem associated with MSF. Section 4 demonstrates the

experimental results on face recognition problem and Sec-

tion 5 concludes this paper.

2. SPATIAL CO-OCCURRENCE BASED
HISTOGRAMS

2.1. Markov Stationary Features Revisited

The Markov Stationary Features (MSF) [4] was recently

proposed to characterize spatial co-occurrence of histogram

patterns based on Markov Chain models, which is shown to

be generally superior over the coherence vector and auto-

correlogram by incorporating both intra-bin and inter-bin

co-occurrence information for visual representation. Here,

we give a brief introduction of MSF as follows.

The visual image or video is quantized into K histogram

bins S = {c1, ..., cK}, and the MSF is a feature represen-

tation that can characterize both intra histogram-bin spatial

information and inter histogram-bin spatial information. The

spatial co-occurrence matrix is defined as C = [cij ] ∈ R
K×K

with each element as

cij = #(pc
1 = ci, p

c
2 = cj | ||p1 − p2|| ≤ d), (1)

where p1 and p2 are a pair of neighboring pixels with distance

not larger than d (d is set as
√

2
2 in this work), the correspond-
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ing bin indices are denoted as pc
1 and pc

2, respectively, and

the # means the number of pairs satisfying all the conditions

listed in brackets. Note that the matrix C is symmetric and

nonnegative. The co-occurrence matrix can be interpreted

from a statistical view [4], and the corresponding transition

matrix derived from the spatial co-occurrence matrix is de-

fined as P = [pij ] ∈ R
K×K , where

pij =
cij

∑K
k=1 cik

. (2)

The above definition of P satisfies the basic properties of

a Markov chain, namely,

1. pij ≥ 0,∀ ci, cj ∈ S. (3)

2.

K∑

j=1

pij = 1, i = 1, 2, · · · , K. (4)

This representation of the Markov transition matrix is of K2

dimension and may not be robust. In [4], the initial distri-

bution, namely, the auto-correlogram (a row vector πa), and

the stationary distribution of the Markov chain (a row vector

π) are combined to form a 2K dimensional representation,

called Markov stationary features, i.e., [πa, π]. The station-

ary distribution of the transition matrix is a K-dimensional

row vector, denoted as π = (π1, π2, ..., πK), satisfying

π = πP. (5)

For a regular Markov chain [5], the stationary distribution

could be directly obtained as the solution to Eqn. (5). How-

ever, for general cases when the chain is irregular [5], there

exists no unique solution to Eqn. (5), and then the informa-

tive stationary distribution is often approximated as the row

average of the matrix

An =
1

n + 1
(I + P + P2 + P3 + ... + Pn), (6)

where n is a large integer. In next subsection, we prove that

there exists an informative trivial solution with explicit se-

mantics for every transition matrix derived from a spatial co-

occurrence matrix.

2.2. Justification of Informative Trivial Solution

Theorem The distribution π, defined as πi =
∑

j cij
∑

i

∑
j cij

, is a

trivial solution to the transition matrix P defined in Eqn. (2),

namely, π = πP.

Proof: Substituting πi =
∑

j cij
∑

i

∑
j cij

into the right side of

Eqn. (5), we obtain

(πP)i =
∑

k

πk × pki (7)

=
∑

k

∑
j ckj

∑
i

∑
j cij

× cki∑
j ckj

(8)

=
∑

k cki∑
i

∑
j cij

=
∑

k cik∑
i

∑
j cij

= πi, (9)

where the third equation is based on the symmetric property,

i.e., cik = cki, ∀ i, k. This proves that π with πi =
∑

j cij
∑

i

∑
j cij

is a trivial solution.

This trivial solution has explicit semantic, that is, πi char-

acterizes the total co-occurrence number,
∑

j cij , for the ci

histogram pattern. Moreover, if we denote nd as the number

of pixels with �2 distances not larger than d for each pixel

(except for the boundary ones), we have

∑

j

cij
.= #(pc = ci) × nd, (10)

∑

i

∑

j

cij
.=

∑

i

#(pc = ci) × nd = N × nd, (11)

where pc is the histogram bin index for a pixel p, and N is

the total number of pixels for each image. Here, the
.= comes

from the fact that the boundary pixels of an image may have

fewer neighboring pixels with �1 distance as d. Then the se-

mantic of the Markov stationary features can be further ex-

plained as

πi =

∑
j cij

∑
i

∑
j cij

∝
∑

j

cij (12)

.= #(pc = ci) × nd ∝ #(pc = ci). (13)

It means that the MSF described in [4] approximately equals

to the original histogram features, and hence can only convey

very limited spatial co-occurrence information. An illustra-

tive example where MSF fails to convey discriminant infor-

mation is shown in Fig. 1.

The success of MSF stems from its combination with the

auto-correlogram features πa, and the weighted difference

between these two types of features implicitly characterizes

inter-bin spatial co-occurrence information.

3. DIRECTED MARKOV STATIONARY FEATURES

As proved above, the inherent ambiguity associated with MSF

is caused by the symmetric property of the co-occurrence ma-

trix. In this section, we present the so called Directed Markov

Stationary Features (DMSF) for addressing this problem. In-

stead of using undirected pixel pairs, we extract the pixel pairs

for each selected direction. Namely, we define several sets

of local pixel pairs corresponding to different directions, i.e.,
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Fig. 1. An example which shows an informative trivial solu-

tion of MSF with no discriminant information. Note that we

set d = 1 for this example.

horizontal {SH}, vertical {SV } and two diagonal directions

{SD1}, {SD2} as illustrated in Fig. 2. We calculate the co-

occurrence matrix for each selected direction. More specifi-

cally, the spatial co-occurrence matrix CH modeled by all the

horizontally directed pixel pairs is defined as

cH
ij = #(pc

1 = ci, p
c
2 = cj | (p1, p2) ∈ {SH}). (14)

Similarly, for vertical or diagonal directed pairs, we calculate

the co-occurrence matrix as:

cV
ij = #(pc

1 = ci, p
c
2 = cj | (p1, p2) ∈ {SV }). (15)

cD1
ij = #(pc

1 = ci, p
c
2 = cj | (p1, p2) ∈ {SD1}). (16)

cD2
ij = #(pc

1 = ci, p
c
2 = cj | (p1, p2) ∈ {SD2}). (17)

Note that the matrices cH
ij , cV

ij , cD1
ij and cD2

ij are no longer

symmetric since the pixel pairs are directed, namely, cH
ij �=

cH
ji . The definitions of pH

ij , pV
ij , pD1

ij and pD2
ij , are the same

as in Eqn. (2). And we extract the stationary distribution πH ,

πV , πD1 and πD2 and the initial distribution πH
a ,πV

a ,πD1
a

and πD2
a using the same method as in Eqn. (6), which gives

us an 8K representation vector:

x = [πH , πV , πD1,πD2,πH
a , πV

a , πD1
a ,πD2

a ], (18)

where πH
a is the auto-correlogram, namely the normalized

version of the vector [cH
11, c

H
22, · · · , cH

KK ]. The significant dif-

ference with MSF is that now the stationary distribution πH ,

πV , πD1 and πD2 do not correspond to any informative triv-

ial solutions, and it can truly characterize the spatial context

information.

4. EXPERIMENTS

4.1. Data Sets

Two face databases CMU PIE [6] and FRGC V1.0 [7] are

used in the face recognition experiments. We used 3329
and 5658 frontal face images from 68 and 275 individuals

Fig. 2. Illustration of the way to extract different directed

pixel pairs.

Fig. 3. Some sample face images from CMU PIE database

(top row) and FRGC V1.0 database (bottom row)

with varying expressions and illuminations for these two

databases. For CMU PIE database, the subset from the pose

indexed as C27 is used. The images are of gray scale and

with size as 64 × 64 and 100 × 100 pixels, respectively. The

databases are randomly split into equal parts for training and

testing. Some sample face images from both databases are

shown in Fig. 3.

4.2. Face Recognition based on DMSF

To validate the general performance of MSF and our proposed

DMSF, we exploit three different low level features widely

used for face recognition, namely, gray level, local binary pat-

tern (LBP) [8], and direction of gradient (DOG) [9]. For gray

level feature, 16 histogram bins are used that correspond to

different levels of image intensities. For LBP, we used the

uniform LBP features which lead to 59 bins for histogram

quantization. For direction of gradient, we use 16 bins that

uniformly divide the whole direction space into 16 intervals.

Note that the bin number we chosen is based on the best clas-

sification performance of each raw histogram representation

respectively. We vary the size of the input image by down-

sampling with bilinear interpolation to validate the robustness

of the representations. For MSF, we reported both the approx-

imation solution [4] and our derived row sum solution (i.e.,

MSF (V2)). We do not further compare the proposed DMSF

with coherence vector and auto-correlogram features, since

the MSF shows to be superior over them [4].

Note that although many stronger classification algo-

rithms, e.g., Support Vector Machine (SVM) [10], exist for

further improving classification accuracy, in this work, we

use the simple nearest neighbor classifier for final classifi-

cation to better identify the gap between different histogram

features and avoid the affection of the consequent strong

classifiers. The dissimilarity measurement is based on χ2
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Table 1. A summary of the recognition rates (%) for face classification on CMU PIE and FRGC V1.0 databases.

FRGC Ver-1.0 Dataset CMU PIE Dataset

Feature Gray Level LBP DOG Feature Gray Level LBP DOG

Image Size: 100 × 100 Image Size: 64 × 64
Histogram 34.50 39.45 27.29 Histogram 42.54 72.25 66.30

MSF 33.79 37.12 35.45 MSF 46.53 62.25 77.96
MSF (V2) 39.34 40.37 34.43 MSF (V2) 45.92 74.52 76.12

DMSF 42.24 36.69 38.42 DMSF 50.95 70.23 82.81
Image Size: 50 × 50 Image Size: 32 × 32

Histogram 32.63 60.34 31.74 Histogram 37.45 76.55 59.98
MSF 34.29 57.65 40.76 MSF 40.21 72.87 67.77

MSF (V2) 36.87 62.57 39.98 MSF (V2) 41.50 77.04 67.22
DMSF 45.49 63.06 48.25 DMSF 47.08 82.32 74.95

Image Size: 25 × 25 Image Size: 16 × 16
Histogram 24.67 54.44 21.63 Histogram 29.04 66.30 45.30

MSF 26.76 50.94 33.33 MSF 30.69 55.31 54.82
MSF (V2) 28.17 58.43 33.12 MSF (V2) 30.88 64.95 56.17

DMSF 35.95 55.04 44.79 DMSF 37.02 60.28 66.97

distance between two histogram vectors x and y, namely,

D(x,y) =
1
2

∑

j

(xj − yj)2

xj + yj
. (19)

The comparison results with the original histogram, MSF

and DMSF are listed in Table 1, from which the following

observations can be made: 1) The original histogram gives

the lowest recognition rates, and MSF improves the perfor-

mance for gray level and DOG features as reported in [4]; 2)

Our proposed DMSF generally gives significant improvement

on recognition accuracy compared with MSF, which validates

the effectiveness of our method, since it avoids the inherent

ambiguity of the trivial solution of MSF. 3) However, one

could also see that for LBP features, sometimes the origi-

nal MSF (i.e., polynomial approximation) and our proposed

DMSF (i.e., which also adopts the approximation solution)

gives poor performance. This is due to the fact that for some

certain visual feature quantization, a considerable number of

histogram bins are empty, which results in unstable calcula-

tion of the approximation solution. One could observe that

our derived solution of MSF (V2), i.e., using the row sum

method, does not suffer from this issue. 4) The performance

of our proposed DMSF is robust in terms of different image

scales and different visual features.

5. CONCLUSIONS

In this paper, we addressed the inherent ambiguity of the re-

cently proposed MSF method for image spatial context mod-

eling. And we proposed the so called Directed Markov Sta-

tionary Features to eliminate this ambiguity as well as to in-

corporate more spatial context information. Our experimental

results well justified the effectiveness of the proposed DMSF.
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