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ABSTRACT 
 
Local features are widely used for content-based image retrieval 
and object recognition. We present an efficient method for 
encoding digital images suitable for local feature extraction. First, 
we find the patches in the image corresponding to the detected 
features. Then, we extract these patches at their characteristic scale 
and orientation and encode them for efficient transmission. A 
Discrete Cosine Transform (DCT) with adaptive block size is used 
for patch compression. We compare this method to directly 
compressing feature descriptors using transform coding. 
Experimental results show the superior performance of our 
technique. Image patches can be compressed to rates around 55 
bits/patch (18x compression relative to uncompressed SIFT feature 
descriptors) and still achieve good image matching performance. 
 

Index Terms— Image compression, image matching, feature 
descriptors, transform coding 
 

1. INTRODUCTION 
 
Many applications in computer vision, pattern recognition, and 
image processing require the use of local image features. Examples 
of robust local features include Scale-Invariant Feature Transform 
(SIFT) [1] and Speeded-Up Robust Features (SURF) [2].  

In an image matching framework, keypoints are detected from 
database and query images. Then, feature descriptors are 
calculated for every keypoint. Matching between two descriptors is 
usually evaluated using the L2 distance. SIFT is generally regarded 
as one of the best feature extraction algorithms for being robust 
against many image deformations [3]. In SIFT, keypoint detection 
is based on maxima detection in Difference of Gaussians (DoG) 
pyramid and the descriptor consists of histograms of gradients in a 
patch located around the detected keypoint. 

For applications where data are transmitted over a network for 
feature detection and image matching, it is desirable that the 
amount of data sent is as low as possible. Some recent work 
proposed solutions to compress the feature descriptors using 
Karhunen-Loeve (KLT) transform coding [4]. The KLT matrix is 
trained from the statistics of sample descriptors. Others 
investigated dimensionality reduction via principle component 
analysis [5] or linear discriminant analysis [6]. 

In this paper, instead of compressing the feature descriptors 
directly, we explore an approach that compresses image patches 
centered on the keypoints used for feature extraction. We can 
exploit the fact that most parts of the image are not used for feature 
extraction. By sending only the patches containing the keypoints  

Fig. 1. System design for patch compression 
 

after compressing them efficiently to low bit rates, we can obtain 
better image matching results than sending the compressed 
features. Building upon existing image coding standards, we found 
that using JPEG [7] to send an image for the purpose of feature 
extraction yields results worse than compressing the feature 
descriptors directly. However, we achieve superior results with a 
simplified version of the recently proposed Direction-Adaptive 
Partitioned Block Transform (DA-PBT) [8].  

The DA-PBT first divides the image into macro-blocks (16 x 
16). Within each macro-block, it chooses the best block size (16 x 
16, 8 x 8 or 4 x 4) and the best among 9 directional modes. The 
best block size and the best direction are selected via minimizing a 
Lagrangian cost function. In this paper, we only use the adaptive 
block size capability of DA-PBT with no directional modes. We 
refer to this transform as the Adaptive Block-size Discrete Cosine 
Transform (AB-DCT). 

The rest of the paper is organized as follows. Sec. 2 discusses 
the proposed system design. In Sec. 3, we analyze the performance 
of patch compression using different image coding techniques and 
compare it to compression of the feature descriptors. In Sec. 4, we 
present experimental results obtained with a database of CD covers 
illustrating that our compression technique works well for a 
practical image retrieval problem.  
 

2. SYSTEM DESCRIPTION 
 

Fig. 1 represents the proposed design of the system. On the 
client side, SIFT keypoint detection is performed [1]. For every 
keypoint, we define a grid of a fixed size, e.g., 16 x 16 points, 
centered at the keypoint, rotated according to the keypoint 
orientation, and scaled so that the area it covers is representative of 
the image feature surrounding the keypoint. The image is sampled 
at the grid and rearranged into a square patch. This is done for all 
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the keypoints and then all patches are stacked into a single image 
to be compressed by the encoder. We use the AB-DCT followed 
by a context-adaptive arithmetic coder for entropy coding, which 
is more efficient than the entropy coding method adopted in [8]. 

The compressed patches are sent to the server side where a 
SIFT descriptor is calculated from every patch. The query 
descriptors are then classified through a scalable vocabulary tree 
(SVT) [9], searching greedily for the nearest neighboring database 
descriptors. The SVT enables fast search through a large database 
and identifies a small set of most probably matching database 
images. The positions of the keypoints also should be transmitted 
to the server for performing geometric consistency check. The 
descriptors of the database images are calculated using the same 
procedure used for query images.  

Note that SIFT descriptors are calculated from the gradients 
of the pixel values within the patch. Thus, we need not send the 
mean value of the patch since it will not affect the gradients. 
Accordingly, the mean value of each patch is subtracted before 
encoding to reduce the coding rate.  

Because we are only concerned with matching the descriptors 
but not the visual quality of the image, the patches can be 
compressed coarsely. Moreover, the sender extracts the keypoint 
locations, as well as scale and orientation of the patches, based on 
the uncompressed image data. Therefore, this aspect of image 
matching is not affected by lossy patch compression. 

 
3. PERFORMANCE OF PATCH COMPRESSION 

 
In order to study the effect of patch compression on feature 
quality, we extract patches from the Winder-Brown dataset [10]. 
We use 10,000 patch pairs that match and 10,000 patch pairs that 
do not match. These patches are extracted at their characteristic 
scale and then oriented so that the maximum gradient is along the 
vertical direction. As the authors in [10] indicate that the jitter 
errors in their datasets are less than those present in a real 
situation, controlled amounts of jitter based on the recommended 
values in [10] are added to the patches. The patches used in our 
experiments can be found in [11]. 

We compress the first patch in each patch pair using the AB-
DCT. Our initial experiments were done using the DA-PBT. 
However, since patches are already oriented, the use of the 
directional modes did not improve compression significantly. This 
led us to use the AB-DCT, i.e., switching off the DA-PBT 
directional modes. The compressed patch serves as the query 
patch. The other patch in the pair is not compressed and serves as 
the database patch. We then compute SIFT descriptors [1] for the 
query and the database patches and measure the L2 distance 
between the resulting descriptors for each pair.  

These distances are used to build two histograms representing 
the PDFs of distances for the matching and non-matching patches. 
Smaller overlap between the two PDFs is better since it implies a 
lower probability of matching error. Using the two PDFs, we 
obtain the receiver operating characteristic (ROC) curve [10] 
which plots correctly detected matches as a fraction of all true 
matches against incorrectly detected matches as a fraction of all 
true non-matches.  

Targeting a bit rate lower than direct compression of feature 
descriptors [4], we are most interested in rates below 100 
bits/patch. Fig. 2 shows the ROC curves for the AB-DCT 
compression at rates around 78 and 39 bits/patch. Dotted lines 

Fig. 2. ROC curves for AB-DCT compressed patches 

Fig. 3. ROC curves for AB-DCT and JPEG2000 patches 

Fig. 4. ROC curves for KLT feature descriptor compression 
 

indicate patch size of 32 x 32 while solid lines indicate 16 x 16. 
The original patch size is 64 x 64 and the center footprint is 
cropped after patch orientation. The ROC curve without 
compression is plotted for reference. At high rates, a larger patch 
size works better because more information is preserved around 
the keypoint. At lower rates, a smaller patch size is better since it 
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Fig. 5. PDF of L2 norm distances for matching patch pairs 

Fig. 6. Distances between original and compressed descriptors 
 
achieves comparable performance with fewer bits (Fig. 2). Based 
on the previous curves we select to use 16 x 16 patches since our 
goal is to work at the lowest possible rate. This block size will be 
used throughout the rest of the paper. 

Using the JPEG standard we cannot achieve these very low 
rates while obtaining acceptable matching performance. For 
comparison, we compressed the patches using JPEG2000 [12] at 
comparable rates. Fig. 3 shows a comparison between the AB-
DCT and the JPEG2000 ROC curves at rates around 79 and 39 
bits/patch. Similarly, the low rate of 39 bits/patch cannot be 
achieved using feature descriptor compression via transform 
coding as reported in [4]. Fig. 4 shows the ROC curve we obtain 
with descriptor compression at a rate of 57.6 bits/descriptor. Patch 
compression at a rate of 38.9 bits/patch is plotted for comparison. 

From this experiment, we see that the AB-DCT outperforms 
the JPEG2000 standard for patch compression. Also, the efficiency 
of patch compression compared to feature descriptor compression 
[4] is obvious. In general block transforms are more suited for 
compressing patch images than subband coding transforms such as 
the DWT in JPEG2000 [12] because of consistency with patch 
edges. Thus, due to its design as a block transform and the use of 
adaptive block sizes with efficient entropy coding, the AB-DCT is 
a very good choice for application in patch compression. 

We further studied the probability distribution of the L2 
distances between the descriptors of the matching pairs in the case 
where we compress the first patch using the AB-DCT and compare 
it to the case of without compression. The resulting PDFs are 
shown in Fig. 5 and the PDF for the compressed non-matching  

 
 
 
 
 
 
 
 

                (a)                                           (b) 

 

 

 

 

 

 

 

 

 

(c) 
Fig. 7. (a) Example database image, (b) query image, (c) patches 

extracted from query image 
 

pairs is plotted for reference.  Although the PDF of the L2 norm 
distances is shifted to the right in the case of compressing the 
patches, the difference between the PDFs is small for large 
distances (above 1.1 in the figure). These are the distances where 
we generally put the threshold for the match decision. 

Another interesting observation is shown in Fig. 6. This figure 
represents the PDF of the L2 distances between the descriptor 
extracted from the uncompressed patches and those extracted from 
the same patches but after compression at 38.9 bits/patch using the 
AB-DCT. We see that the variation in the L2 distances between 
descriptors caused by compression is comparable to that caused by 
the change in appearance between different patches containing the 
same scene (Uncompressed in Fig. 5). This means the variation 
can still be handled by the robust image matching mechanism. 

 
4. IMAGE MATCHING RESULTS 

 
In this section, the technique of patch compression using the AB-
DCT is applied to the CD cover recognition problem where we 
have a database of 1800 clean CD covers and we photograph 50 
CDs using a camera phone to represent the query images. All 
query images have a single matching CD cover in the database. 
Fig.7 shows an example database-query image pair and the patches 
extracted from the query image. Mid-gray represents zero level. 
The complete set of query images is found in [13]. 

First, a pairwise matching test was performed on query 
images. Descriptors calculated from the compressed query image 
patches are matched with those calculated from the uncompressed 
patches of the matching database image. The ratio test [1] is 
performed to determine matching descriptors and then RANSAC 
[14] is used for geometric consistency check. In this experiment, 
we target at minimizing the average rate spent per patch while 
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Fig. 8. Relation between average bit rate per patch and average 

number of feature matches 
 
getting a sufficient number of Post-ratio-test and Post-RANSAC 
feature matches to indicate a matching image. 

Fig. 8 represents the relation between the average rate per 
patch and the number of matched features Pre-RANSAC (after the 
ratio test) and Post-RANSAC. These results are averaged over the 
50 image pairs and are based on using the SIFT algorithm for 
feature detection and description. The number of feature matches 
increases as more rate is spent to encode the image patches. 

To match a database image, the number of Post-RANSAC 
matches should exceed a certain threshold. Using a rate of 55.18 
bits/patch, we obtained correct matches for 48 image pairs where 
the PSNR of the image patches was around 29 dB. Note also that 
operating on the actual patches without mean removal requires a 
higher average rate of 60.96 bits/patch.   

Second, we test retrieval performance for the entire database 
of 1800 CD covers. The query image patches are compressed to a 
rate of 55.18 bits/patch as it gives good results for pairwise 
matching (This bit rate is indicated with a dashed line in Fig. 8). 
The CD image database contains 1.5 million features. For fast 
search through the database, the query image features are classified 
using an SVT [9]. We assume that the right match is among the 25 
top matching results from the SVT. The SVT top matches are then 
pairwise compared by ratio test and RANSAC, and the database 
image with the most Post-RANSAC feature matches is presented 
as the correct match. However, if all the 25 top matches yield Post-
RANSAC results below a certain threshold, this indicates that no 
match was found. Using this framework, we again were able to 
achieve 48 correct matches for our 50 query CD images. Using the 
same query images without compressing the patches achieves 49 
correct matches while requiring much higher rate to send the 
uncompressed patches or the uncompressed SIFT features. 
Typically, an uncompressed 128-dimensional SIFT feature vector 
is represented by 1024 bits. This means we obtain around 18x rate 
saving with a negligible effect on image matching performance. 

 For comparison with feature descriptor compression, the 
descriptors extracted from the uncompressed patches were 
compressed using the method in [4] to a rate of 63.25 
bits/descriptor and the retrieval performance was tested using the 
same SVT. Only 46 correct matches were achieved despite using a 

higher bit rate. This shows the efficiency of the proposed 
technique in terms that it outperforms feature descriptor 
compression in a practical image retrieval problem.  
 

5. CONCLUSION 
 
Compression of feature patches enables significant rate reduction 
when the goal is to use these patches for image matching. We 
present an efficient framework for patch extraction and 
compression. We found the AB-DCT to be a good choice for patch 
compression outperforming current image coding standards. 
Transmitting compressed patches yields rate saving of around 18x 
relative to uncompressed SIFT descriptors and gives better results 
than compression of feature descriptors. 
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