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ABSTRACT

We present a computationally efficient and robust method for

temporally calibrating video sequences from unsynchronized

cameras by using object trajectories. Existing methods re-

main restricted in terms of their assumptions, and/or they are

computationally expensive. To match and align the object

trajectories, and thus to recover the frame offset between

video sequences, we present an algorithm that is based on the

Longest Consecutive Common Subsequence. The candidate

frame offsets are obtained from each matched trajectory pair,

and then a confidence check is performed. The algorithm is

robust against possible errors due to background subtraction

and location extraction, and can handle large frame offsets.

We present experimental results for different frame offset val-

ues on different video sequences, which show the robustness

of the algorithm in recovering the frame offsets. We also

compare the presented algorithm with our previous work to

demonstrate the computational efficiency provided.
Index Terms— Temporal calibration, unsynchronized

cameras, frame offset, longest consecutive common subse-

quence, trajectory alignment

1. INTRODUCTION

We present a method for temporal calibration of video se-

quences from unsynchronized cameras by using object trajec-

tories. Temporal calibration identifies corresponding frames

in video sequences captured by different cameras. A low-

level method for temporal calibration is synchronization that

forces cameras to capture the corresponding frames at the

same time by having a master clock. A generic temporal cal-

ibration method that is based only on image information pro-

vides a solution for cameras without a common clock as well,

and removes the need for special equipment and hardware.

Temporal calibration is very important for multi-camera

systems, because the transfer of relevant data between cam-

eras is essential. Hardware-based synchronization increases

installation cost. An alternative way is to use image/video

processing to align frames from the cameras and retrieve the

frame offset.

∗This work was supported by NSF under Grant CNS–0834753.

Kuthirummal et al. [1] presented an approach in Fourier

Domain, which requires at least seven stationary correspond-

ing points in three views. Also, a point needs to be tracked

over a number of frames in three views. Lee et al. [2] in-

troduced a method to align the centroids of moving objects.

However, centroid points are treated individually rather than

as a part of a trajectory, which increases the combinatorial

complexity. Moreover, accuracy can be affected by the height

of the objects, thus by their distance to the cameras. Caspi

et al. [3] also introduced a trajectory-based algorithm. It is

assumed that the temporal offset between the two sequences

is at most 25 frames. Tuytelaars and VanGool [4] proposed

a method that can deal with moving cameras and general 3D
scenes. However, this method requires tracking five corre-

sponding points in two sequences, which are selected manu-

ally as a subset of a feature point set tracked through the video

sequence. Velipasalar and Wolf [5] introduced a search algo-

rithm to match and align trajectories obtained from different

sequences. This method is robust to errors caused by back-

ground subtraction or location extraction. Yet, it performs an

exhaustive type of search.

In this paper, we describe a method based on finding the

longest consecutive common subsequence (LCCS). Longest

Common Subsequence (LCS) was proposed by Vlachos et

al. [6] to find similar multi-dimensional trajectories, and was

used by Buzan et al. [7] and Cheriyadat and Radke [8] for

finding similar trajectories in video sequences. Both [7] and

[8] focus on trajectory clustering in a single camera view. We

present an LCCS-based algorithm with a customized similar-

ity criteria, and employ it in a multi-camera application to find

consecutive matching points as a part of our method. The pro-

posed algorithm provides significant improvement in terms of

computational complexity, and has comparable or better re-

sults with respect to the previous work described in [5].

2. TRAJECTORY ALIGNMENT USING LCCS

We detect, track and extract the location of each moving ob-
ject, as described in more detail in the previous work [5], to
form trajectory data. Let Lc

tc
be the label of the t th

c trajec-
tory on the view of camera c. Thus, c ∈ {1, 2} and tc ∈
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{1, 2, . . . , Nc} where Nc is the number of trajectories in the
sequence captured by the cth camera. The trajectory data for
label Lc

tc
is in the following format:

Lc
tc

→

8>>>>>>><
>>>>>>>:
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(1)

where F
Lc

tc
i is the frame number for the ith point in the tra-

jectory, PE(F
Lc

tc
i ) = (x

Lc
tc

Ei
, y

Lc
tc

Ei
) is the extracted location

of the foreground object at frame F
Lc

tc
i in the current view,

and PC(F
Lc

tc
i ) = (x

Lc
tc

Ci
, y

Lc
tc

Ci
) is the corresponding location

of PE(F
Lc

tc
i ) in the other view, calculated at frame F

Lc
tc

i by

using an estimated homography [5].

Longest Common Subsequence (LCS) is an algorithm

originally designed for finding similar strings in computer

science applications. A two-dimensional trajectory matching

application for LCS is proposed in [6]. In this paper, we mod-

ify LCS to LCCS, which only finds the longest consecutive

common subsequence. We present an LCCS-based algorithm

with a customized similarity criteria to find matching trajec-

tories on different camera views.

2.1. LCCS-based algorithm

Let L1
t1 and L2

t2 denote two trajectories containing n and m
points, respectively, which are expressed as

L1
t1 =

{
(F

L1
t1
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We define Head
(
L1

t1

)
and Head

(
L2

t2

)
as

Head
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)
=
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The Euclidean distance between the nth extracted point in

the first trajectory, and the mth calculated point in the second

trajectory is denoted by dEnCm .

Definition 1 Given a positive number ε, we define
LCCSε

(
L1

t1 , L
2
t2

)
as follows:

LCCSε

(
L1

t1 , L
2
t2

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 + LCCSε

`
Head

`
L1

t1

´
, Head

`
L2

t2

´´
if dEnCm < ε and dCnEm < ε

0 if L1
t1or L2

t2 is empty or
dEnCm ≥ ε or dCnEm ≥ ε

The constant ε is the distance matching threshold. The

points that are close in space are regarded as matching

points. If the extracted location in the first view and the

calculated corresponding location from the second view are

close enough and the extracted location in the second view

and the calculated corresponding location from the first view

are close enough, then the matching score is increased by 1.

LCCS searches all points in two trajectories sequentially and

collects the LCCS score in a recursive way. LCCS only saves

the number of consecutive matching points by resetting the

LCCS score to 0 once the search meets an unmatched pair.

Since we assume that cameras have the same frame rate,

we can find all matching points by LCCS without time

stretching. However, there may be possible errors due to

background subtraction and/or location extraction. Thus,

there may be points in a trajectory, which make LCCS com-

parison fail, and reset the similarity score to 0. To avoid this,

we introduce a positive integer, M , as a threshold for the

number of matched points. We only need to find the first

M matching points between the two trajectories. Then, we

stop searching for matching points by LCCS once we have

LCCSε

(
L1

t1 , L
2
t2

)
= M . We continue to search the trajec-

tory from the last matched point pair. For example, if ith

and jth points in two trajectories are the M th matched point

pairs, then we stop LCCS at these points. We denote the

number of matched points as Nmatch, and Nmatch is set to be

M when LCCS-based search is stopped. Then, we compare

the (i + 1)th and (j + 1)th points from the two trajectories,

respectively. If they match, Nmatch will be increased by 1,

and it will be M + 1; if they do not match, we move on to

the points (i + 2) and (j + 2) without increasing Nmatch.

We continue this search until we reach the end of one of the

trajectories.

Definition 2 We define the similarity function S between two
trajectories L1

t1 and L2
t2 , given ε and M , as follows:

S
`
ε, M, L1

t1 , L2
t2

´
=

Nmatch

min (n, m)

We define the similarity function S by normalizing

Nmatch by the minimum length of the two trajectories, thus

0 ≤ S ≤ 1. This similarity function S is used as the main

criteria to find the best matching trajectories.

Thus, for a trajectory L1
t1 in the first camera view, we cal-

culate the value of S with every trajectory from the second

camera. In other words, if there are N2 trajectories in the sec-

ond camera view, we perform N2 many similarity computa-

tions. As described above, we have two groups of location co-
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ordinates for every point in each trajectory: extracted location

and its calculated location in the other view. The distance be-

tween the points PC

(
F

L1
t1

i

)
and PE

(
F

L2
t2

j

)
is denoted by

dCiEj , where t1 ∈ {1, 2, . . . , N1} and t2 ∈ {1, 2, . . . , N2}.

With the given distance threshold ε, we consider two points

matching with each other when dCiEj
< ε and dEiCj

< ε are

both satisfied.

After computing the similarity scores between the L1
t1 and

all the trajectories in the second camera, we pick the trajec-

tory in second camera view, which gives the highest S value,

as the match of the trajectory L1
t1 . Then, we can easily obtain

the frame offset from these two trajectories, since all match-

ing point pairs have the same frame offset. The frame offset

from L1
t1 is denoted by OL1

t1 , and is obtained by subtracting

the frame numbers of any matched pair of points. Then, the

two matched trajectories and their corresponding frame offset

value are saved as the input of the confidence check step.

We perform the above steps for every trajectory in the first

camera view to find their matching trajectory in the second

view. The pseudo code for the proposed LCCS-based trajec-

tory matching is presented in Table 1.

for every L1
t1 , t1 ∈ {1 . . . N1}

Smax = 0;

for every L2
t2 , t2 ∈ {1 . . . N2}

n = length(L1
t1 );

m = length(L2
t2 );

set tablematch = [n + 1] [m + 1] all 0; k=1;

while k ≤ n ∗ m
i = floor ((k − 1) /m) + 1;
j = k − (i − 1) ∗ m;
if dCjEi < ε and dEjCi < ε

tablematch [i + 1] [j + 1] = 1 + tablematch [i] [j] ;
if tablematch [i + 1] [j + 1] == M

istop = i;
jstop = j;
Nmatch = M ;
break;

else k + +;
set i = istop;
set j = jstop;
while i < n and j < m

i + +;
j + +;

if dCjEi < ε and dEjCi < ε
Nmatch = Nmatch + 1;

else continue;
S = Nmatch/min (n, m) ;

O
L1

t1
L2

t2
= F

L2
t2

jstop
− F

L1
t1

istop
;

if S > Smax

S
L1

t1
max = S; t

′
1 = t2; OL1

t1 = O
L1

t1
L2

t2
;

save
„

L1
t1 , L2

t′1
, S

L1
t1

max, OL1
t1

«

Table 1. Pseudo code for the LCCS-based trajectory matching

In Table 1, t′1 denotes the matching trajectory found for t1.

After we obtain candidate trajectory pairs, we find the median

value Smed of their similarity scores. We keep the trajectory

pairs whose similarity score is greater than Smed. This de-

creases the number of possible matches by half by removing

the pairs with low scores. In addition to the computational

aspects, this step is useful since a trajectory may not have a

real match in the other camera view. This trajectory will have

a low score, and will be removed with this step.

2.2. Confidence check for the frame offsets
In this step, we perform a confidence check to find the most
reliable frame offset value among the different offset values
obtained from the matched trajectories. The confidence check
is inherited from [5] and described below. Let Λ denote the
set of the trajectory numbers on the current camera view,
that are kept with their matched trajectories from the other
view. In other words, the set Λ is built from the elements of
{1, 2, ...N1} such that the S value calculated for the trajecto-
ries with labels {L1

t1 : t1 ∈ Λ} and their matched trajectories

is greater than Smed. Let Tmatch be the saved data for the
matched trajectories that are kept. Tmatch has the following
format:

T match =
n “

L1
t1 , L2

t′1
, OL1

t1

”
: t1 ∈ Λ

o

The confidence check is formulated as follows:

O∗ = argmin
O∈{O

L1
t1 :t1∈Λ}

1

|T match|
X

τ∈{L1
t1

:

t1∈Λ}

0
@1

|τ |
|τ |X

e=1

D(F τ
e , F τ

e +O)

1
A

(2)

The confidence check starts with a L1
t1 , where t1 ∈ Λ, and

OL1
t1 which is the offset candidate obtained from the cor-

responding trajectory pair. For all the track points of L1
t1 ,

this offset candidate is added to their frame numbers. Then

the points of a trajectory, which exist at the resulting frames,

in the other camera are found. The point-wise distance,

D(F τ
e , F τ

e +O) [5], is calculated for each point pair, and the

mean of the point-wise distance measures over the number

of trajectory points is found. If there are multiple trajectories

existing at the resulting frames in the other camera, the mini-

mum of the mean point-wise distance measures obtained from

these trajectories is used. The same process is repeated, again

using OL1
t1 , for the track points of the next trajectory in Λ,

and the overall mean of the point-wise distance measure over

different trajectories is obtained for the offset OL1
t1 . All offset

candidates are tried in this way, and the offset candidate that

has the minimum overall mean of point-wise distance over all

different trajectories is the best frame offset that we recover.

2.3. Comparison of the proposed method with the previ-
ous work

The previous method presented in [5] calculates the distance

of each point in each trajectory of the first camera to the
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each point in each trajectory of the second camera. This

exhaustive search involves four main loops, which results in

O (N1∗N2∗n∗m∗ C) operations. N1, N2, n,m are the sizes

of each nested loop. C is the number of operations inside the

innermost loop.

As seen in Table 1, we set up three loops at the begin-

ning, and the initial sizes of these loops are also N1, N2, n ∗
m. However, in most cases, the loops are not executed com-

pletely. Once we find M many matching point pairs, the

LCCS searching loop is broken. If the M matching points

are at the beginning of the trajectories, we only need M ∗
m steps to find the first M matching pairs. There will be

L = min (n − istop,m − jstop) more steps after the LCCS

stops. Thus, the number of operations becomes O (N1 ∗ N2∗
(M ∗ m ∗ C + L)). M is normally much smaller than n,

which reduces the total number of operations approximately

by M/n. In our experiments, (M/navg) < 0.2. Thus, the

running time and complexity is reduced significantly com-

pared to the previous work in [5].

3. EXPERIMENTAL RESULTS

The proposed algorithm is tested on the trajectory data ob-

tained from the video sequences in the PETS2001 database.

One of the two sequences of each video set is delayed by a

known offset. In this way, the ground truth for the frame off-

set is known for each experiment. In our experiments, we use

ε = 20 and M = 5.

The examples of the matched trajectories from two cam-

eras are shown in Figure 1. As seen in Fig. 1(d), the algorithm

is robust to errors of the background subtraction algorithm,

which caused a zigzag-like trajectory. Table 2 shows the re-

sults obtained after the confidence check step together with

the ground truth. Results obtained with the proposed algo-

rithm and the previous method in [5] are displayed together.

The proposed method, which provides significant improve-

ment in terms of computational complexity, has comparable

or better results with respect to our previous work. If back-

ground subtraction and location extraction results are more

accurate, better results can be achieved with the proposed

method.

(a) Trajectory on the 1st view (b) The match of the trajectory in (a)

(c) Trajectory on the 1st view(d) The match of the trajectory in (c)

Fig. 1. Examples of matched trajectories in two cameras

Frame Offsets

Vid. 1 Ground Tr. 300 500 800 1000

Prev. Meth. 301 499 792 989

Prop. Meth. 301 498 800 998

Accuracy 99.67% 99.6% 100% 99.8%

Vid. 2 Ground Truth 300 500 800 1000

Prev. Meth. 300 500 807 1000

Prop. Meth. 299 495 795 999

Accuracy 99.67% 99% 99.37% 99.9%

Table 2. The frame offsets obtained after the confidence check with

the proposed method and the previous work.

4. CONCLUSIONS
We presented a computationally efficient and robust algo-
rithm to match and align object trajectories from unsyn-
chronized cameras, and thus to recover the frame offset.
This method employs LCCS during the trajectory matching.
Compared to the previous work in [5], which performs an
exhaustive search, the proposed algorithm reduces the op-
eration time by a factor of M/navg , where M = 5 in the
experiments, and navg is the average trajectory length. While
providing significant improvement in terms of computational
complexity, the proposed algorithm has comparable or bet-
ter results with respect to our previous work. It is reliable
and robust to possible errors due to background subtraction
or location extraction. After performing the experiments
with different frame offsets and different video sequences, an
average accuracy rate of 99.63% is achieved.
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