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ABSTRACT

We investigate a practical approach to solving one instantia-
tion of a distributed hypothesis testing problem under severe
rate constraints that shows up in a wide variety of applica-
tions such as camera calibration, biometric authentication and
video hashing: given two distributed continuous-valued ran-
dom sources, determine if they satisfy a certain Euclidean dis-
tance criterion. We show a way to convert the problem from
continuous-valued to binary-valued using binarized random
projections and obtain rate savings by applying a linear syn-
drome code. In finding visual correspondences, our approach
uses just 49% of the rate of scalar quantization to achieve the
same level of retrieval performance. To perform video hash-
ing, our approach requires only a hash rate of 0.0142 bpp to
identify corresponding groups of pictures correctly.

Index Terms— random projections, distributed hypothe-
sis testing, camera calibration, video hashing

1. INTRODUCTION
The following problem is one that arises in seemingly dis-
parate areas. Suppose there are two distributed sources, one
that outputs �x ∈ R

N , and another that outputs �y ∈ R
N , such

that ‖�x‖ = ‖�y‖ = 11. Say Alice observes �x and Bob observes
�y. Under severe rate constraints in a distributed setup, Alice
would like to know with high probability if ‖�x−�y‖2 < τ ; we
will refer to this problem as distributed distance testing un-
der severe rate-constraints. One solution is for Bob to send
some suitably quantized version of �y to Alice. However, un-
der severe rate constraints in a distributed setup, this might
not be suitable. In this paper, we propose a method which
uses binarized random projections and linear codes.
One application where such a problem needs to be solved

is that of determining visual correspondences in a distributed
fashion between cameras in a wireless camera network [1,
2, 3]. This is a critical step for computer vision tasks such
as camera calibration, novel view rendering, object recogni-
tion and scene understanding. It is usually performed by first
locating features in input images, computing descriptors for
each of the features, and then checking the distances between

1In fact, all that is required is that �x and �y have the same norm, but for
clarity of discussion, we will assume that they have unit norm.

descriptors of features across cameras. In a centralized set-
ting, advances from the computer vision community in locat-
ing features and computing descriptors [4, 5] have made es-
tablishing visual correspondences reasonably successful. In a
distributed camera network setting, the communication costs
of exchanging information would need to be accounted for.
Another class of applications where this problem arises

is that of image authentication (see for example [6, 7]) and
video hashing. Suppose Alice wants to verify that her copy
of an image (or video) is similar to what Bob has. Bob can
send a perceptual hash of his image to Alice. One approach is
to use the actual images such that the transmitted hash should
check out if the images satisfy somemean square error (MSE)
distortion constraint [7]. Alternatively, we can perform such
a distance check in the space of image features [6].
Our main contributions are the following. First, we show

that given a euclidean distance threshold, we can perform this
test under severe rate constraints by using binarized random
projections and linear codes. Second, we show a systematic
way of constructing a statistical test and computing the rate
of the linear code based on the specified euclidean distance
threshold. Third, we show a simple error bound that can be
used to determine the number of random projections needed
to satisfy an acceptable probability of error.
The rest of the paper is organized as follows. We first re-

view relevant work in Section 2. Sections 3 and 4 discusses
the binarized random projections and application of the linear
code respectively. We summarize the entire procedure in Sec-
tion 5, and present experimental results for both visual corre-
spondences and video hashing in Section 6 before concluding.

2. RELATED WORK
Han and Amari presented a survey of work on statistical infer-
ence with consideration of communications costs [8]; while
they presented theoretical and asymptotic results on achiev-
able error-exponents, no constructive and practical scheme is
given. To determine correspondences, Cheng et al. introduced
a feature digest which applies Principal Components Analysis
(PCA) at each camera on feature descriptors and then sends
only the top principal components [1]. Yeo et al. exploited the
correlation between descriptors of features in correspondence
for rate savings by using distributed source coding (DSC) [2],
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Fig. 1. Graphical illustration of proof for Fact 1. A general multi-
dimensional case can always be reduced to a 2-D case, in the plane formed
by �x, �y, and the origin. The angle subtended by the rays from the ori-
gin to �x and �y in this plane can be found using simple trigonometry to be
θ = 2 sin−1(δ/2). If a hyperplane orientation is chosen uniformly at ran-
dom, then the probability of the hyperplane separating �x and �y is just θ/π.

while prescribing bit allocation based on descriptor statistics.
Roy and Sun used binarized random projections to build a

descriptor hash [6]; the Hamming distance between hash bits
is then used to establish matching features. The statistical
link between the original descriptor space and the descriptor
hash space was shown empirically, and was further analyzed
by Yeo et al. [3]. Martinian et al. proposed a way of storing
biometrics securely using a syndrome code to encode the en-
rolled biometric bits [9], while Lin et al. proposed the use of
syndrome codes on quantized projections for image authenti-
cation [7]. In both approaches, the syndrome is decoded using
the test biometric or test image as side-information; a match
is signaled by decoding success. However, the rate of the
syndrome code has to be chosen by trial and error to balance
security, false positive and false negative performance.

3. BINARIZED RANDOM PROJECTIONS
In previous work, Yeo et al. showed the following [3]:

Fact 1. Given �x, �y ∈ R
N s.t. ‖�x‖ = ‖�y‖ = 1 and ‖�x−�y‖2 =

δ, the probability that a randomly (uniformly) generated hy-
perplane will separate them is ρ(δ) = 2

π
sin−1 δ

2
.

Proof of Fact 1. We first reduce the problem to a 2-D case as
follows. �x, �y and the origin defines a plane, S. Observe that
a hyperplane H passing through the origin separates �x and
�y if and only if the line intersection between H and S also
separates the projections of �x and �y on S. The result then
follows from trigonometry, as shown in Fig. 1.

Using Fact 1, we convert the distance testing problem
from a deterministic and continuous-valued problem to a
probabilistic and binary-valued one. Let �li ∈ R

N be some
randomly generated vector; this is equivalent to choosing a
random hyperplane. Define the following random variables:
Xi = I

[
�li · �x > 0

]
and Yi = I

[
�li · �y > 0

]
. From Fact 1, if

‖�x−�y‖2 = δ, then P (Xi ⊕ Yi = 1) = ρ(δ), since (Xi⊕Yi)
is 1 if and only if the hyperplane separates �x and �y. Hence, we
can model Xi and Yi as being related by a binary symmetric
channel (BSC) with parameter ρ(δ) when ‖�x− �y‖2 = δ.
Denote �X, �Y to be binary-valued M -tuples formed by

stacking {Xi}M
i=1

and {Yi}M
i=1

respectively, where M is the
number of projections taken. The hamming distance between
�X and �Y , dH( �X, �Y ), follows the binomial distribution and
can be used as a test statistic in a hypothesis testing frame-
work to decide if �x and �y satisfy the distance criterion. Let
p denote the probability of a randomly generated hyperplane
separating �x and �y, and let pτ = ρ(τ). The hypotheses are:

H0 : p > pτ + μ/2 (i.e. ‖�x− �y‖ > τ )
H1 : p < pτ − μ/2 (i.e. ‖�x− �y‖ < τ )

where μ specifies an “insensitive” region around pτ for which
we would not measure performance. Since dH( �X, �Y ) has
a binomial distribution, it is a monotone likelihood ratio
(MLR) statistic [10]. Therefore, we can construct a uniformly
most powerful (UMP) test of level α based on thresholding
dH( �X, �Y ) with the following properties: the probability of
falsely declaring a pair satisfying the distance criterion is
always less than α, while the probability of missing a pair
satisfying the distance criterion is not more than any other
tests of level α [10]. One reasonable choice for the thresh-
old is γM = M · pτ . Such an approach has been shown
to out-perform scalar quantization in retrieving visual corre-
spondences in the low-bitrate regime [3].
To understand how many projections are needed for a test

to satisfy a given error bound, we apply a Chernoff bound on
the probability of false detection (declaringH1 givenH0) and
missed detection (declaring H0 given H1) of the hypothesis
test. For example, given that p > pτ + μ/2 (i.e.H0),

P (Ĥ1|p, H0) ≤ exp (−MD(pτ ||p)) (1)
≤ exp (−MD(pτ ||pτ + μ/2)) (2)

where D(p||q) is the Kullback-Leibler divergence between
two Bernoulli sources with parameter p and q, (1) follows
from applying Chernoff bound, and (2) follows from consid-
ering the worst case in H0, which is when p = pτ + μ/2.
In this analysis, we assume the choice of threshold γM =
Mpτ . A similar analysis can also show that P (Ĥ0|H1) ≤
exp (−MD(pτ ||pτ − μ/2)). These bounds can then be used
to determine a suitable number of projections to use given a
desired error bound.

4. LDPC CODES
In a related work, Körner and Marton [11] showed that if �X
and �Y are generated by binary symmetric sources related by a
BSC with known cross-over probability p, then to recover the
flip pattern, �Z = �X⊕�Y , with probability of failure less than ε,
both Alice and Bob need to use at leastH(p) bits respectively
(asymptotically). The achievable strategy uses a linear code
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and is as follows [11]: Let f(�Z) be a linear encoding function
(returningK output bits fromM input bits) of the binary vec-
tor �Z, and ψ(·) be the decoding function of this linear code,
such that P

(
ψ(f(�Z)) �= �Z

)
< ε. Alice and Bob then con-

struct and transmit f( �X) and f(�Y ) respectively. The decoder,
Alice, can then construct f( �X)⊕f(�Y ) = f( �X⊕�Y ) = f(�Z),
since f(·) is a linear code, and reconstruct �Z with probability
of failure less than ε.
While the above scheme recovers the flip pattern �Z,

Ahlswede and Csiszár showed that the above rate region in
fact holds even if only the hamming distance is desired and
�Y is known at the decoder [12] (and p is known). This also
suggests that if we want to recover the hamming distance
only when p < pτ (but p is otherwise unknown), the best we
can hope to do in a one-shot scenario (i.e. Bob just sends one
message to Alice with no other interaction) is to use a rate
of H(pτ ), and the method described earlier is an achievable
strategy. The optimality of this scheme when we just want to
know if the hamming distance is smaller than some threshold
is an open question.
For a practical implementation used in this work, we use

the parity-checkmatrix of a low-density parity-check (LDPC)
code [13] as the linear encoding function [7, 9]; thus, the out-
put f( �X) is just the LDPC syndrome of �X . To decode, we
apply belief-propagation (BP) decoding [14] on the XOR sum
of the syndromes of �X and �Y , i.e. f( �X)⊕f(�Y ). We choose a
code with blocklengthM and rate r such that it has a thresh-
old corresponding to γM

M
[14]. To determine if the distance

criterion is satisfied, decoding must converge2, and the ham-
ming weight of �Z is less than γM .

5. METHOD
The procedure for performing distributed distance testing is
as follows. The user parameters are: N , the dimensionality
of the real-valued source; M , the number of projections de-
sired; and τ , the euclidean distance threshold (or equivalently
γM = Mρ(τ)). From these parameters, we generate a suit-
able LDPC code with K syndrome bits, i.e. rate (1 − K

M
),

such that it has threshold γM

M
, and obtain its parity check ma-

trixH ∈ GF (2)M×K . We also generate a random projection
matrix L ∈ R

N×M with the ith column denoted by �li. Both
H and L are shared by the encoder and decoder.
The encoder takes a vector �x ∈ R

N as input, and re-
turns a binary vector �mx ∈ GF (2)K . It performs the fol-
lowing: (i) Compute the binary random projections, �X , with
the ith element being Xi = I

[
�li · �x > 0

]
; and (ii) Compute

the syndrome of �X , �mx = HT �X . The decoder takes two
binary vectors, �mx, �my ∈ GF (2)K (�my is obtained from �y
using the same encoder as described above), and returns H1

if the distance criterion is satisfied by �x and �y, and H0 oth-

2We determine that it converges if the reconstruction satisfies the parity
check matrix within 50 iterations.
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Fig. 2. ROC curves of determining visual correspondences.

erwise. The process is: (i) Compute �mz = �mx ⊕ �my; (ii)
Perform BP decoding on the syndrome �mz to obtain recon-
struction Ẑ ∈ GF (2)M ; and (iii) If BP decoding converges
and dH(Ẑ) ≤ γM , returnH1; else, returnH0.

6. EXPERIMENTAL RESULTS
6.1. Establishing visual correspondences
We first evaluate the performance of three schemes on the
problem of visual correspondences retrieval between two
cameras: (i) the proposed Random projections with LDPC
(RP-LDPC); (ii) Random projections (RP); and (iii) Scalar
quantization (SQ). We use the “Graf” dataset made publicly
available3 by Mikolajczyk and Schmid [5], in which images
are various views taken of a planar scene. We use two views
and extract 1000 features from each image using the Hessian-
Affine region detector [5], and compute descriptors of each
feature using the 128-dimensional Scale-Invariant Feature
Transform (SIFT) descriptor [4]. We note here that SIFT de-
scriptors are normalized in the last step of computation to be
robust to illumination changes and thus satisfy the unit-norm
assumption. From training data, we determined that a reason-
able distance criterion has τ = 0.4367, with ρ(τ) = 0.1401.
Accordingly, we use a rate (1-0.73) LDPC code such that the
empirically determined threshold of the code is about 0.1401.
Fig. 2 shows the ROC of RP-LDPC with 256 projections,

which requires 187 bits per descriptor. Comparing it with the
ROC of RP with 256 projections (i.e. 256 bits per descriptor),
it is clear that RP-LDPC is able to match the performance of
RP using the same number of projections but with less rate.
RP-LDPC also outperforms both RP with 187 projections and
SQ with 2 bits per coefficient (i.e. 256 bits per descriptor).
Compared to SQ with 3 bits per coefficient (i.e. 384 bits per
descriptor), RP-LDPC with 187 bits per descriptor has the
same level of retrieval performance, but uses only 49% of the
former’s rate.

3http://www.robots.ox.ac.uk/˜vgg/research/affine
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6.2. Video hashing
In a video file synchronization application, video hashing can
be used to first determine which group of pictures (GOP) are
in common between the source and destination videos [15].
For example, Alice has a video which she gives to Bob who
compresses it for storage. Later, Alice updates her copy of
the video, and Bob wishes to synchronize his copy. To avoid
sending frames that Bob already has, she wishes to know
which frames of Bob are within a target distortion of video
frames of her copy— these frames need not be re-transmitted.
To demonstrate the effectiveness of using binarized ran-

dom projections with linear code, we carry out the following
experiment. We use the “Foreman” video in QCIF format
(176× 144 pixels). Our setup is such that Alice has the orig-
inal video, and Bob has a compressed version of the video,
with a PSNR of 42.1 dB. Therefore, the hash should identify
that correspondingGOPs from the two videos match. Our tar-
get is to identify GOPs with a distortion such that their MSE
is less than 10.3 (i.e. PSNR is greater than 38 dB).
Consider two blocks of pixels, �x and �y, with zero means.

We assume that they have similar second moments, such that
‖�x‖2 = ‖�y‖2 = Nσ2, where N is the number of pixels in
the block. The MSE between the blocks is ‖�x − �y‖2/N =

σ2‖x̃ − ỹ‖2, where x̃ = �x/
√

Nσ2 and ỹ = �y/
√

Nσ2; thus,
‖x̃ − ỹ‖ =

√
MSE/σ2. From Fact 1, we then compute

ρ = 2

π
sin−1

√
MSE/4σ2. With our target MSE criterion,

and estimating σ2 = 2940 from the video, we arrive at a flip
probability of ρ = 0.0188 and thus a threshold of γM = 448.
The hash is constructed over a GOP of 15 frames as fol-

lows [15]. Each frame is divided into non-overlapping blocks
of 8 × 8 pixels. For each block, we subtract the mean pixel
value of the entire video, and compute and binarize 4 ran-
dom projections. Since we want to efficiently check each
non-overlapping GOP from Bob with all overlapping GOPs
from Alice, by using the same set of projection matrices for
each frame, we only have to perform the projections on each
frame once and use it for all subsequent checks. For each
GOP, we first construct a hash of 23760 bits. We then use
a rate (1-0.2279) LDPC code to meet this threshold, hence
we only need to transmit 5415 syndrome bits per 15 frames,
which corresponds to a rate of 0.0142 bits/pixel.
On this particular task, we identified all the matching

GOPs correctly without returning any false positives, i.e. both
recall and precision are 100%. We also note that the same
performance is obtained when the LDPC code is not used,
i.e. there is a rate reduction of 77% with no loss in matching
performance when LDPC code is used on top of the binarized
random projections.

7. CONCLUDING REMARKS
We have presented a constructive solution for determining in
a distributed fashion and under severe rate constraints if two
normalized real vectors satisfy a given Euclidean distance cri-
terion. By using binarized random projections, we can con-

vert the problem into a binary hypothesis testing problem, and
obtain rate savings by applying a linear code to the computed
bits. The rate to use for the code can be easily determined by
the desired Euclidean distance threshold. Our experimental
results for the two applications of establishing visual corre-
spondences and video hashing show that the proposedmethod
vastly out-performs scalar quantization at low rates.
In future work, we would like to remove the same norm

constraints and consider other useful source vector distribu-
tions and distance measures. We have not explored any secu-
rity properties of our scheme, but we think that the proposed
scheme offers some inherent security, due to the data obfusca-
tion performed by both the binarized random projections and
the syndrome coding [9].
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