ESTIMATING CORRESPONDENCE BETWEEN MULTIPLE CAMERAS USING JOINT
INVARIANTS

Raman Arora, Yu Hen Hu*

University of Wisconsin-Madison
Department of Electrical and Computer Engg.
1415 Engineering Drive, Madison, WI-53706

ABSTRACT

The joint invariants of the projective group PSL(3,RR) on
RP2, the five-point volume cross-ratios, are studied to ad-
dress the problem of correspondence in a camera network.
The distribution of cross-ratios over the unit square as well as
in a small local-neighbourhood of a reference point are found
to have a heavy tail. No cross ratio value is unique but the
collection of five point cross ratios generated by taking all
possible combination of five points completely prescribes the
curve. Sections of the signature submanifold that admit large
enough variation of cross ratios are found to be sufficient in
providing correspondence across wide perspectives. Such in-
variant signatures may be collected independently at cameras
with different viewpoints and shared, thereby achieving the
registration of objects in the image. Experimental results with
license plate database are provided.

Index Terms— Image registration, object recognition,
computer vision.

1. INTRODUCTION

The invariant based classification schemes find utility in their
ability to reduce the set of possible matches and speed up
the search of similar classes or objects. These approaches
have drawn a lot of attention in recent decades in the areas of
computer vision and pattern recognition [1, 2]. The invariant
based methods may be classified as global or local: the global
invariants utilize the entire image to compute feature values
whereas local invariants are computed typically from a much
smaller subsets. For instance, Fourier descriptors are global
whereas curvature is local. Local descriptors are more desir-
able due to their robustness to occlusions and noise. However,
one of the fundamental problems with the use of local de-
scriptors is that of correspondence or image-registration. The
lack of correspondence (across multiple views) between the
regions on which the local invariant features are computed
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renders any kind of classification ineffective. We describe
a method in this paper that uses joint projective invariants
to classify objects while simultaneously achieving correspon-
dence between multiple views captured in a camera sensor
network.

Projective (or perspective) invariants are the image de-
scriptors that remain invariant to view-point. Projective in-
variants have been computed in several settings and applied
to various computer vision tasks like localization [3, 4], au-
tonomous navigation [5] and are particularly desirable for 3D
scene analysis and surveillance [6]. A few researchers have
focused on the probabilistic analysis of application of pro-
jective invariants. In [7] and [8], a probability distribution is
derived for the four-point-cross-ratio, a classical planar pro-
jective invariant, under different assumptions on the distri-
bution of the four points. The distribution of cross ratios is
further examined in [9] as more constraints on relative dis-
tances of the four points are imposed. The performance of the
cross ratios is described quantitatively in terms of probability
of rejection and false alarm in [10]. Unfortunately, in all of
the works mentioned above, the correspondence was assumed
apriori. Without the correspondence information, the classi-
fication methodology breaks down since the cross ratios are
not unique. This paper presents a simple approach to address
the issue of correspondence. Although we focus on five-point
volume cross-ratios that comprise the fundamental joint in-
variants of the projective group PSL(3) on RP? [11], the ideas
presented here are applicable to other projective invariants.

The paper is organized as follows. Section 2 describes
the object recognition problem in a multi-view camera net-
work setting. The probabilistic analysis of five-point volume
cross-ratios is provided in Section 3. Section 4 presents an
invariant-signature based algorithm for image registration and
recognition and discusses its application to the license plate
database. The test dataset was generated by capturing im-
ages of license plates from various angles and distances. The
images have been pre-processed to extract the binary images
encoding the contour (boundary) of the alpha-numerical char-
acters on the license plates [12].
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2. PROBLEM FORMULATION

Let C, Cy be two cameras with different perspectives of an
overlapping 3D scene. Let {O1;}/2,,{02;}_, be the sets
of planar curves, extracted through pre-processing, in the im-
ages captured at sensors C; and Cy respectively. Given a
pair of curves (O1,;, 02 ;) the object recognition problem is
to determine if the two curves represent the same object in
the scene or not. The five-point joint invariants on the planar
curves are used to address the classification problem.

Let G be a Lie group acting on a manifold M. An (n +
1)—point joint invariant, [(2°, ... 2"), of the transformation
group G is defined to be a function that is invariant to the joint
action of G' on the Cartesian product M *("+1) given by

g- (%) = (g2 g 2", M

where g € Gand 2°,..., 2" € M.

The transformation group that we are interested in is the
projective transformation group PSL(3,R) acting on the 2-
dimensional projective space M = RP2. An element of
the projective transformation group is described by the ma-

trix < Cf; Z ) € GL(3,R) where A is a 2 x 2 matrix, b, ¢

are 2 x 1 vectors and d is a scalar. A point in the planar image,
z € R2, gets transformed to the point w € R2, given by the
group action N
27—’—17_ 2)
c-z+d

The Geometric First Main Theorem for the Projective
Group [11] states that every five-point joint invariant for the
action of PSL(3,R) on RP? is generated by the following
cross ratios,

’U_}:g~2’:

V(0,1,2)V(0,3,4)
V(0,1,4)v(0,2,3)’

CR(0:1,2,3,4) = 3)

and
V(0,1,2)V(1,3,4)

V(0,1,4)V(1,2,3)’
where V (i, 4, k) is the area of the triangle defined by 2%, 27
and z*. The cross ratio defined in (3) is described as the ra-

tio of the product of the areas of the non-shaded triangles in
Figure 1 and the product of areas of shaded triangles.

CR(1;0,2,3,4) = 4)

3. DISTRIBUTION OF JOINT INVARIANTS

This section presents probabilistic analysis of the five point
cross ratios as it may be applied to the computer vision prob-
lems. First, empirical probability distributions are generated
for joint invariants on the unit square as well as on the test
dataset. Second, we discuss that small perturbations of the
points result in small excursions of cross ratios. This assures
the robustness of joint invariant based method against noise.
Finally, it is shown that given a cross-ratio value, the corre-
sponding five point set on any given curve is not unique.
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Fig. 1. Five point projective joint-invariant is the ratio of
product of areas of non-shaded triangles and shaded triangles.

3.1. Probability distribution of cross ratios

The first step toward probabilistic analysis of five point cross
ratio is to study its distribution. The probability distribution of
the classic four point cross ratios was studied in [7, 8, 10] and
a closed-form expression was given under various assump-
tions on the underlying distribution of points in the plane.
Assuming that the points are identically and uniformly dis-
tributed over the unit square, the empirical probability distri-
bution function (pdf) of five point volume cross ratios is plot-
ted in Figure 2. The pdf exhibits peaks at cross ratio values
equal to zero and one and is symmetric about 0.5. However,
as we impose spatial separation on the points (uniformly dis-
tributed but with different means), the pdf transforms and is
no longer symmetric. The distribution of cross ratios on the
license-plate contour-database [12] also follows the general
form as seen in Figure 2. An important observation from these
plots is the heavy-tail of the pdf(s). The dotted line repre-
sents the probability that corresponding cross ratio values lie
outside the interval [—1000, 1000]. Most of such large cross
ratios are observed as five point set approaches singularity
points of I in R%*? (for cross ratio in equation (3), these are

the points where 29, 2!, 2% or 29, 22, 23 are almost collinear).

3.2. Local distribution of cross ratios

Next, we investigate the local distribution of the cross ratios
and the effect of perturbation of points on the corresponding
cross ratios. Given five points z¢ with Cartesian coordinates
(24,9:), fori =0, 1,2, 3,4, the area of the triangle described
by 2, 27, 2F is given as

Ty Ty Tk
V(@i k) =1 v v Yk |- (5)
1 1 1
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Fig. 2. Distribution of random five point volume cross ratios.

Let Az* denote the jittered point z* + A, Then

ACRg(0;1,2,3,4)
= CR(A0;1,2,3,4) — CR(0;1,2,3,4)
_ V(A0,1,2) V(A0,3,4)  V(0,1,2) V(0,3,4)
T V(A0,1,4) V(A0,2,3)  V(0,1,4) V(0,2,3)

Now,
o+ Ay x1 T2
V(A0,1,2) = | yo+ Ay y1 ¥
1 1 1
= (o +A2)(y1 —v2) —x1(yo + Ay — y2)
+-732(y0 + Ay - yl)'
Therefore,
Ax X1 i)
V(A0,1,2) —V(0,1,2) = | Ay y1 42
0 1 1

= Ax(yl - 212) - Ay(xl - 1132)

Let M = max{|z1 — 22|, |y1 — y2|}. Then choosing ¢; > 0,
such that

max(|Az|, |Ay]) < e -|V(0,1,2)]/M,

we get,
Similar relationships hold for other volumes, yielding
ACRg(0;1,2,3,4 1+ 1+
ol )’<’( Wlte) o 7

CR(0;1,2,3,4) (1+es)(1+£es)

The jitter analysis implies that the joint invariants are rela-
tively robust to small amount of noise. Figure 3 shows the dis-
tribution of cross-ratio-differences around a given reference
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Fig. 3. Local distribution of cross ratios around a reference
five point set.

set of five points. The empirical pdf is in agreement with the
analysis above: small jitter results in little change in cross
ratios.

3.3. Uniqueness of cross-ratios

Equipped with the probabilistic analysis of the cross ratios, it
is now argued that no single cross ratio is unique and should
not be used for image registration or recognition. First note
that on almost any continuous planar curve, there exists five-
point set with cross ratio equal to (in limit) zero (by construc-
tion, simply choose three points arbitrarily close so that they
are almost collinear). This corresponds to a point . € R®*2,
A permutation of these points will also result in the cross ratio
of infinity (in limit). This is point v € R®*2, The jitter anal-
ysis in the last section shows that cross ratio map is a smooth
open map. Along the straight line, connecting u to v, all the
intermediate cross ratios are observed. And since two lines
can intersect at most at one point, but for the cross ratio value
at the point of intersection, all other cross ratio values are re-
peated. Finally, there are an uncountable number of points
like u (again by construction).

4. JOINT INVARIANT SIGNATURES

Owing to their non-uniqueness, single cross ratios are ineffec-
tive at classification. However, the signature manifold com-
prising of cross ratio values generated by all possible combi-
nations of five points on the planar curve prescribes the entire
curve. A 1-D slice is extracted by fixing four of the five points
on the signature manifold. The representation of the origi-
nal curve with this submanifold is unique up to a projective
transformation [11]. Short sections of the submanifold that
overlap with a singularity point provide good discrimination.
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Fig. 4. (a) Contour of digit 6 extracted from license plate images at camera 1 and (b) camera 2. Shaded triangles in (a)/(b)
appear in the numerator/denominator of the cross ratio, respectively. (c) Invariant joint signatures in the two contour images.

Note that matching proceeds after appropriate thresholding of
cross ratios around the singularity points.

Figure 4 shows contour plots from the license plate test
dataset along with invariant signatures. Figure 4(a),(b) show
the contours of digit 6 (extracted from images of the license
plate 67724QB) from two different viewpoints. The set of
five points on contours that generated the invariant signatures
(in Figure 4(c)), are highlighted with symbols. The invariant
signature comprising of 21 cross ratio values (given by equa-
tion (4)) was obtained by translation of z! along the contour.
The initial set of points is marked by circles and the jittered
set is marked by squares. Note that the change of sign of the
cross ratios is attributed to the flipping of the triangle defined
by 20,21, 2% as 2! is perturbed. Numerous such signatures
were generated for contour (a) and the matching signatures in
contour (b) were unique with probability close to one.

5. CONCLUSIONS AND FUTURE DIRECTIONS

This paper discusses the challenges of image registration or
correspondence in the multiple camera setting. It is argued
that five point joint invariants for projective transformations
of planar curves lack the uniqueness of any single cross ra-
tio. But with high probability the objects can be uniquely
described by sections of signature submanifolds. We are cur-
rently working on simultaneous correspondence and classifi-
cation based on joint invariant signatures. Future work will
focus on distributed computation and matching of signatures
at various nodes in a large camera network.
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