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Abstract—The Discrete-Cosine-Transform (DCT) is the most
widely used transform in image and video compression. Its
use in image compression is often justi ed by the notion that
it is the statistically optimal transform for rst-order Markov
signals, which have been used to model images. In standard
video codecs, the motion-compensation residual (MC-residual) is
also compressed with the DCT. The MC-residual may, however,
possess different characteristics from an image. Hence, the
question that arises is if other transforms can be developed that
can perform better on the MC-residual than the DCT. Inspired
by recent research on direction-adaptive image transforms, we
provide an adaptive auto-covariance characterization for the
MC-residual that shows some statistical differences between the
MC-residual and the image. Based on this characterization, we
propose a set of block transforms. Experimental results indicate
that these transforms can improve the compression ef ciency of
the MC-residual.

Index Terms—Discrete cosine transforms, Motion compensa-
tion, Video coding

I. INTRODUCTION

The Discrete-Cosine-Transform (DCT) is the most widely
used transform in image and video compression. Its use in
image compression is often justi ed by its being the statisti-
cally optimal transform for a class of signals, known as the
rst-order Markov signals, which have been used to model

images. In video coding, however, what is often transformed is
the motion-compensation residual (MC-residual). In standard
video codecs, the MC-residual is also transformed with the
DCT. The MC-residual is related to images from which it
has been obtained. However, its spatial characteristics may be
different from that of an image. A number of studies report
that the statistical characteristics of the MC-residual have some
differences from those of images [1], [2], [3]. Hence, the
question that arises is what those characteristics are, if the
DCT can effectively exploit them, and if we can develop other
transforms that can exploit these characteristics better.

Typically, motion compensation works well in smooth and
slowly moving regions, and the MC-residual in such regions
is small. Regions where motion compensation fails are oc-
clusion regions. A major portion of regions where motion
compensation works to some extent are object boundaries.
Since motion-compensated prediction can only account for
translational motion, whereas real-world objects also have
other motions such as rotation, the shapes of objects tend to
change slightly from frame to frame. As a result, the prediction
around object boundaries is not successful. Therefore the high-
magnitude pixels in the MC-residual tend to concentrate along
object boundaries exposing one-dimensional structures in the

MC-residual. An example is shown in Figure 1. It appears that
using two-dimensional transforms that have basis functions
with square support is not the best choice.

Recently, there has been a great deal of research on trans-
forms that can take advantage of locally anisotropic features
in images [4], [5], [6], [7]. Conventionally, the 2-D DCT or
the 2-D Discrete Wavelet Transform (DWT) is carried out as
a separable transform by cascading two 1-D transforms in
the vertical and horizontal directions. This approach does not
take advantage of the locally anisotropic features present in
images because it favors horizontal or vertical features over
others. The main idea of these other approaches is to adapt to
locally anisotropic features by performing the ltering along
the direction where the image intensity variations are smaller.
This is achieved by performing ltering and subsampling on
oriented sublattices of the sampling grid [6], by directional
lifting implementations of the wavelet transform [5], or by
various other means. Even though most of the work is based
on the wavelet transform, applications of similar ideas to DCT-
based image compression have also been made [7]. However,
it appears that the applicability of these ideas to modeling and
compressing the MC-residual have not been investigated.

In this paper, we develop block transforms for the MC-
residual. Using insights obtained from the research on
direction-adaptive image transforms, we investigate how lo-
cally anisotropic features of images affect the MC-residual. In
the next section, we obtain adaptive auto-covariance character-
izations of the MC-residual and the image, which reveal some
statistical differences between the MC-residual and the image.

Fig. 1. Motion compensation residual (Mobile sequence at CIF resolution,
frame 8 and 10)
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Based on this characterization, we propose in Section III a
set of block transforms which can be used, together with the
2-D DCT, to compress the MC-residual. Experimental results,
presented in Section IV, demonstrate that these transforms can
improve the compression ef ciency of the MC-residual.

II. CHARACTERIZATION OF THE MOTION COMPENSATION

RESIDUAL

Characterizations of the MC-residual are more focused on
representing its auto-covariance with functions that provide a
close t to experimental data [1], [2], [3]. These studies have
used one global model for the entire MC-residual. However,
the lessons learned from the research on direction-adaptive
image transforms indicate that adapting the representation to
local anisotropic features in images may improve the com-
pression performance. We consider how such local anisotropic
features of images affect the MC-residuals. To analyze this,
we characterize the auto-covariance of the image and the MC-
residual using a more generalized version of the conventionally
used separable rst-order Markov model. The separable model
and the generalized model are given below in (1) and (2),
respectively.

R(I, J) = ρ
|I|
1 ρ

|J|
2 . (1)

R(θ, I, J) = ρ
|Icos(θ)+Jsin(θ)|
1 ρ

|−Isin(θ)+Jcos(θ)|
2 . (2)

The generalized model is a rotated version of the separable
model, where θ represents the amount of rotation. Setting it
to zero reduces the generalized model to the separable model.

We estimate the parameters ρ1 and ρ2 for the separable
model, and the parameters ρ1, ρ2 and θ for the generalized
model from blocks of 8x8 pixels of an image (Mobile se-
quence, frame 10) and its MC-residual. We use the biased
estimator to estimate the auto-covariance of the blocks and
then nd the parameters ρ1, ρ2 and θ that minimize the
mean-square-error between the auto-covariance estimate and
the models in (1) and (2). Figures 2-a and 2-b show scatter
plots of ρ1 and ρ2 estimated from the image for the separable
and the generalized auto-covariance models. Figures 2-c and
2-d show scatter plots of the same parameters estimated
from the MC-residual. We use the Mobile sequence for these
experiments because this sequence has various moving objects
causing unsuccessful motion-compensated prediction at object
boundaries. Characteristics similar to those in the plots of
Figure 2 have been observed with other sequences as well.

The scatter plots of ρ1 and ρ2 obtained from the image using
the separable and the generalized auto-covariance models are
plotted in Figures 2-a and 2-b. In the plot of the generalized
model (Figure 2-b), the region along the ρ1 = ρ2 line is less
populated by data points relative to the plot of the separable
model (Figure 2-a). On the other hand, there are almost no
data points beyond the ρ1 = 0.8 and ρ2 = 0.8 lines in
the separable model. From these observations, we can see
that in the generalized case, the data points lying below the
ρ1 = ρ2 line have been shifted along the ρ1 axis towards
the right, and the data points lying above the ρ1 = ρ2 line
have been shifted along the ρ2 axis towards the top. This

implies that by allowing an additional parameter θ in the
model, higher correlation coef cients ρ1 or ρ2 are more likely.
The parameter θ adjusts itself such that either ρ1 or ρ2 point
along more regular variations than in the separable model,
which is consistent with the resampling and lifting methods
in [4] and [5].

From the plots for the MC-residual in Figure 2, we can
observe that in the plot with the separable auto-covariance
model (Figure 2-c), the points seem to ll up evenly a region
between a ρ2 = k/ρ1 curve and the axes. In the plot with
the generalized auto-covariance model (Figure 2-d), the points
seem to concentrate towards the tails of that curve, forming
semi-disks centered on the axes. Better concentration of data
points in a region means better predictability of data, which
in turn implies that the model used in (2) can provide a more
faithful characterization of the data. The signi cant improve-
ment of the characterization with an additional parameter, θ,
is important since a better parametrization of a source can
potentially lead to a better compression of the source.

Figure 2 also illustrates the effect of the locally anisotropic
features of images on the MC-residual. Consider the gener-
alized auto-covariance characterization of the image and the
MC-residual (Figure 2-b and 2-d). While the characterization
of the image has data points which, if roughly described, ll
up two disks tangent to the ρ1 and ρ2 axes, the characterization
of the MC-residual seems to have its data points concentrated
in two semi disks centered on those axes. In other words,
the data points move closer to the axes in the MC-residual
case. This means that given any data point (ρ1, ρ2) in the
image characterization, the smaller covariance factor becomes
even smaller in the MC-residual characterization. This is how
locally anisotropic features of images affect or propagate to
the MC-residual. It is a major difference in the statistical
characteristics between the image and the MC-residual. There-
fore, direction-adaptive transforms proposed for images may
not work as well on MC-residuals. Indeed, in Section IV,
we compare the performance of the direction-adaptive block-
based image transform in [7], with the transforms we propose.
The results show the superiority of the proposed transforms
on the MC-residual.

III. ONE-DIMENSIONAL TRANSFORMS

The ρ1 vs ρ2 scatter plot of the MC-residual obtained with
the generalized model in Figure 2-d indicates that often one of
the two correlation coef cients, either ρ1 or ρ2, is signi cantly
larger than the other. Hence, we propose to decorrelate the
data along the direction with the larger correlation coef cient.
Unlike the direction-adaptive transforms applied to images,
we choose not to perform any decorrelation along the other
direction with the smaller correlation coef cient. For low
correlation coef cients, decorrelation may not perform well. It
may even worsen the energy-compaction, especially for such
signals as the MC-residual. Unlike an image, the energy of the
MC-residual is not uniformly distributed in the spatial domain.
Even within a block, many pixels may have zero intensity
and the energy may often be concentrated in a region of the
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Fig. 2. Scatter plots of estimated parameters ρ1 and ρ2 using the separable and generalized auto-covariance models from an image (mobile sequence at CIF
resolution, frame 10) and an MC-residual (mobile sequence at CIF resolution, frame 8 and 10).

block (see Figure 1). Performing a spatial transform with a
support on the whole block may not produce the best energy
compaction.

The transforms that we propose to use for the MC-residual,
in addition to the 2-D DCT, are shown in Figure 3. They
are one-dimensional DCT’s over groups of pixels in 8x8
blocks. One group of pixels, in the rst transform for example
(most left in Figure 3), consists of the eight leftmost pixels
sitting on top of each other. The groups of pixels are chosen
such that they form lines roughly pointing at one direction,
which is the direction of the large correlation coef cient. We
choose sixteen directions that cover 180◦ and we have sixteen
transforms. Only the rst ve are shown in Figure 3 due
to space limitations. Each group of pixels for each of the
shown transforms are represented with arrows that traverse
those pixels.

The scanning patterns of the resulting transform coef -
cients depend on the orientation of the transforms. They are
designed such that lower frequency coef cients are scanned
before higher frequency coef cients and such that they are
continuous.

The best transform for each block is chosen in a Rate-
Distortion (RD) optimized manner. The block is encoded with
each available transform, including the 2-D DCT. Then a cost
function is formed using a linear combination of the distortion
(MSE) of the block and the number of bits spent on the
block (both to encode the quantized coef cients and the side
information) for each transform. The transform which has the
smallest cost function is chosen for each block.

The chosen transform for each block is encoded using
variable-length-codes (VLC). Since the 2-D DCT is chosen
about half of the time on average, we use a 1-bit codeword to
represent the 2-D DCT and 5-bit codewords to represent each
of the sixteen one-dimensional transforms. This choice was
made because of its simple implementation and because it is
close to the optimal Huffman codes for the average frequencies
of the transforms. More sophisticated methods may result in
improvements in coding the side information.

IV. EXPERIMENTAL RESULTS

We present some experimental results to illustrate the per-
formance of the proposed transforms within the H.264/AVC

reference software. We use QCIF resolution sequences at 30
frames-per-second. Some of the important encoder parameters
are as follows. The rst frame is encoded as an I-frame, and
all the remaining frames are coded as P-frames. Quarter-pixel-
resolution full-search motion-estimation with adaptive block-
sizes (16x16,16x8 8x16,8x8) are used. Entropy coding is per-
formed with context-adaptive variable-length-codes (CAVLC).

The results of the experiments are shown with the
Bjontegaard-Delta (BD) bitrate metric [8] using the following
quantization parameters: 24, 28, 32, 36. The BD-bitrate metric
indicates the average bitrate savings (in terms of percentage)
of the codec with the proposed transforms with respect to the
codec with the conventional transform, the 2-D DCT. Figure 4-
a shows the results obtained with the proposed transforms. The
upper graph shows results that are obtained when taking the
side information, which signals the chosen transform for each
block, into account. The lower graph shows results obtained
without taking the side information into account. The lower
graph is included to show the ultimate performance of the
proposed transforms and scans. These performances may be
achievable if the side information is coded more intelligently
and becomes negligibly small. For QCIF resolution sequences,
the proposed transforms can achieve bitrate savings upto
25.8% with an average of 12%. When the side information
bits are neglected, the ultimate achievable bitrate savings can
be as large as 40.3% with an average of 21.7%.

We have also performed experiments to report the perfor-
mance of the direction-adaptive image transforms in [7] on the
MC-residual. In [7], the performance on images is reported.
The transforms in [7] are 2-D directional DCT’s together
with a DC separation and ΔDC correction method borrowed
from [9]. For the experiments, we have complemented the six
transforms in [7] with another eight transforms to achieve ner
directional adaptivity, which is comparable to the adaptivity
of our proposed transforms. We also used the scans proposed
in [7]. All remaining parts of the system were unchanged.
The results of these experiments are shown in Figure 4-b. The
average bitrate savings are 4.8%, which is less than half of
the 12% achieved with the proposed transforms.
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Fig. 3. One-dimensional transforms for the motion compensation residual. The arrows traversing a set of pixels indicate a one-dimensional DCT on those
pixels. A total of 16 transforms, directed at different directions cover 180◦ . Only the rst ve transforms are shown here. The remaining transforms are
symmetric versions of these ve and can be easily derived.
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(a) BD Bitrate results of the proposed transforms.
Average bitrate savings w.r.t. 2-D DCT is 12%.
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(b) BD Bitrate results of the direction-adaptive image transforms
in [7]. Average bitrate savings w.r.t. 2-D DCT is 4.8%.

Fig. 4. Bjontegaard-Delta Bitrate results for QCIF resolution sequences.

V. CONCLUSION

We have analyzed the effect of locally anisotropic features
of images on the motion-compensation residual (MC-residual).
The analysis reveals statistical differences between the MC-
residual and the image. We have proposed transforms based
on this analysis and reported experimental results which
indicate that these transforms can improve the compression
ef ciency of the MC-residual. Future research efforts focus
on improving these transforms and on investigating the effects
of locally anisotropic features of images on other prediction
residuals such as the intra prediction residual in H.264/AVC,
resolution enhancement residual in scalable video coding and
the disparity compensation residual in multiview video coding.
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