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ABSTRACT 

Video segmentation is an important task for a wide range 
of applications like content-based video coding or video 
retrieval. In this paper, a new spatio-temporal video 
segmentation framework is presented. It is based upon 
robust statistics, namely an M-estimator, and incorporates 
an MPEG-7 descriptor for consistent temporal labeling of 
identified textures. The algorithm is based on assumptions 
about the geometric modifications a given moving region 
undergoes with time as well as on its surface properties. 
Homogeneously moving segments are described using a 
parametric motion scheme. The latter is used to piecewise fit 
the optical flow field in order to extract rigid motion areas. 
Robust statistics are used to carefully constrain split, merge 
and contour refinement decisions. Experimental results 
show that regions detected by the proposed method are 
more reliable than the state-of-the-art. True region 
boundaries are moreover better detected. 

Index Terms— Image segmentation, Motion analysis, 
Image sequence analysis, Texture analysis, M-estimation 

1. INTRODUCTION 
Video analysis typically requires segmentation of the signal 
into uniform regions. Video segmentation is both critical 
and essential, as its accuracy has a significant impact on the 
quality of the final analysis result. 
Some spatio-temporal approaches have been proposed in the 
literature. The better ones typically combine spatial and 
temporal inferences. Spatial information is often used to 
constrain the temporal segmentation results [1],[2]. The 
latter are typically based on short-term motion estimation, 
where motion similarity is evaluated by an adequate norm 
either in the motion parameter space or in the spatial 
domain. Some approaches conduct spatio-temporal video 
segmentation in the transform domain. Zhu et al. [3], for 
instance, use DCT-based features to exploit spatio-temporal 
correlations in video sequences. 
In this paper, a model-based video segmentation method is 
proposed. The underlying model relies on assumptions 
about the geometric modifications a given moving region 
undergoes with time as well as on its surface properties. 
Homogeneously moving segments are described using a 
parametric motion scheme. The latter is used to piecewise fit 

the optical flow field for rigid motion extraction. Robust 
statistics are used to carefully constrain split, merge and 
contour refinement decisions. 
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Fig. 1. Block diagram of the proposed spatio-temporal 
segmentation algorithm 

2. OVERALL FRAMEWORK 
A new spatio-temporal, parametric segmentation algorithm 
is presented in this work. It is based on robust statistics, 
namely an M-Estimator and uses an MPEG-7 descriptor for 
temporally consistent labeling. It is inspired by the work of 
Adiv [4] that has influenced the formulation of various 
video segmentation algorithms (e.g.  [2]). The principle of 
the algorithm presented in this paper is depicted in Fig. 1. 
As can be seen, the proposed approach corresponds to a split 
and merge segmentation strategy with tracking abilities. 
That is, at a given picture transition, the optical flow field is 
split into homogeneously moving regions using robust 
statistics, namely a maximum-likelihood estimator called 
M-estimator. The optical flow and subsequent M-estimation 
can be initialized with segmentation masks delivered by a 
spatial segmentation module to improve their performance. 
Each spatial region is then handled individually. 
The typically over-segmented masks obtained after the 
splitting step are further processed by the motion merger 
module, which aims to convey all regions featuring similar 
motion properties to the same class. 
After the merging step, a morphological closing operation is 
applied to remove small clusters located within a much 
larger homogeneous texture of a different label. Finally, 
temporal tracking as well as contour refinement of the 
detected regions are performed. The output of the proposed 
segmentation algorithm is a mask sequence showing the 
location of homogeneously displaced spatio-temporal 
segments. 
Note that, for spatial segmentation, the algorithm by Spann 
and Wilson [5] is used in this work as it has been shown to 
be very effective. For optical flow estimation, the algorithm 
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by Black and Anandan [6] is used due to its robustness to 
multiple motions, transparency, occlusions and specular 
reflections. The remainder modules will be explained into 
detail in the following.  

3. M-ESTIMATION 
3.1 Principle 
For each spatial region, the M-estimator creates a piecewise 
parametric model of a motion vector field obtained from an 
optical flow estimator. M-estimation eliminates potential 
outliers a posteriori, i.e. without a prior knowledge of the 
data. In the proposed spatio-temporal texture analyzer, the 
data to model correspond to a motion field determined by 
the optical flow estimator at a given image transition. 
Outlier motion vectors are identified and their bias on the 
outcome reduced through the M-estimator in the course of a 
global motion estimation process. 

3.2 Formalization 
Within the M-estimation process described in this paper, the 
perspective motion model [7] defined as 

 

 

 

(1) 

is used, where  correspond to the model parameters, 
with  being translation,  scaling,  shearing, and 

 perspective motion parameters. ) 
corresponds to a spatial motion vector. 
The motion field obtained by optical flow estimation is first 
modeled using the estimated motion parameters as 

 

(2) 

where  correspond to the predicted motion vectors 
at iteration step , while  is the motion parameter set 

 at the same iteration step and 
 correspond to the nth sample location under 

consideration. In a subsequent step, the deviations between 
estimated motion vectors  and reference motion 
vectors , determined through optical flow estimation, are 
evaluated at each pixel location as 

 (3) 

Each motion vector’s weights can now be determined as 

  (4) 

where 

 (5) 

is the mean error,  is the number of samples and  is a 
degree of freedom of the M-estimator that steers the outlier 
threshold. The larger , the more sensitive it becomes to 
outliers. On the other hand, the smaller ,  the more 
conservative does the system become with regard to 
outliers. A robust formulation of the unknown  can now 
be given as  

 (6) 

Outliers are assigned low weights  by this approach. 
Hence, their influence on the global motion estimation 
process is reduced in the next iteration step. The weight 
matrix can be written as 

  (7) 

Each weight appears twice in the weight matrix as, in matrix 
, each data influences two rows of the matrix. The weights 

correspond to real numbers normalized to the interval  
and are exactly zero only in case of very crude outliers. 
As can be seen above, the motion estimation approach via 
M-estimation is an iterative method. The estimation is 
stopped either if the mean prediction error  
 is smaller than a given threshold or if a maximum number 
of iterations has been reached. 

4. MOTION SPLITTER 
The motion splitting module initially operates dense optical 
flow estimation at image transitions using the algorithm by 
Black and Anandan [6] (cf. Fig. 1). The M-estimator is then 
applied to the dense motion field in order to identify 
homogeneously moving regions. Homogeneity is thereby 
defined with regard to the perspective motion model (1) as 
described above. Although a robust M-estimator is used, 
hints provided by the spatial texture analyzer typically yield 
an improved segmentation of the motion field. M-estimation 
is executed recursively by the motion splitter module. The 
given motion field is first split into inliers and outliers. M-
estimation is further applied to the outlier cluster if and only 
if it is large enough. Outlier clusters that are too small are 
not further processed. 
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5. MOTION MERGER 
Initialization of the motion splitter module via spatial 
texture analysis typically yields over-segmentation. Hence, 
motion merger is required. The latter fuses regions with 
similar motion properties. Initially, the homogeneous 
regions are sorted in descending order with regard to their 
size. The merger of a region pair with respective mean 
modeling errors  and  is then simulated to give the 
mean modeling error, , of the merged regions. Large 
regions are first compared to and eventually merged with 
smaller once. Two regions are hereby assumed to feature 
similar motion properties if  is not larger than the mean 
errors  and  of the individual regions. In case the 
modeling costs increase due to the merger, the considered 
regions are not fused. Merged regions are assigned the 
modeling error  otherwise.  

 
Fig. 2. Keyframe of the “Stefan” test sequence (left),  
segmentation mask after merging and closing (right) 

6. MORPHOLOGICAL CLOSING, TRACKING, 
AND CONTOUR REFINEMENT 

After the motion splitting and merging steps, the 
segmentation masks typically exhibit a number of “black 
holes”. I.e. scattered small clusters within much larger ones 
can be observed. The former typically relate to optical flow 
estimation errors or modeling inaccuracies in the M-
estimation process (cf. Secs. 3 and 4). The achievement of 
larger homogeneous areas is enforced by applying a closing 
operation on the output of the merger module. Larger 
“holes”, assumingly having a high likelihood to indicate real 
local motion activity, are thereby kept unchanged, while 
smaller ones are closed, i.e. assigned the same label as the 
surrounding texture. 
Up to this stage, the segmentation masks have been 
generated at image transitions. That is, the label assignments 
are only consistent for contiguous image pairs. In order to 
extend label consistency to the entire input sequence, a 
tracking module is required. For that, the textures identified 
in the course of the video sequence are indexed.  Each new 
texture found in the sequence is matched with the indexed 
textures. In case it is already known, the corresponding label 
is assigned to it, the texture is indexed as unknown 

otherwise and assigned a new label. The Scalable Color 
descriptor (SCC) defined by MPEG-7 [8] is used for 
similarity estimation. It is basically a color histogram in the 
HSV color space. Two textures are considered to be similar 
if the distance between their feature vectors lies below a 
given threshold. The Earth Mover’s Distance (EMD) [9] is 
used as similarity measure in order to enable some 
invariance against luminance and saturation variations that 
are entailed by effects as shadowing or reflection.  
As already said above, the motion analysis conducted up to 
this stage has been done for image pairs. Hence, no use is 
made of the prior knowledge related to the segmentation of 
previous image pairs. The contour refinement module 
tackles this issue by applying a temporal median filtering 
algorithm on the output of the tracking module. The usage 
of this approach for contour refinement is motivated by the 
fact that it enhances noisy images and preserves edge 
information. Temporal median filtering is operated on the 
segmentation masks. A freely settable amount of motion 
compensated masks preceding the current mask is thereby 
considered. This operation yields a label update in the 
current picture with the label of the majority of the past 
pictures at the specified location. This contributes to 
stabilize region shapes in the course of the video sequence. 
On the other hand, at scene changes or in case of fast 
motion, wrong masks may be generated. For that, in this 
work, the costs of the masks generated through temporal 
filtering are compared to those of the masks without 
temporal filtering. The masks with the lowest costs in terms 
of modeling inaccuracies are kept. 

 (8) 

The decision criterion between temporal mapping (tm) and 
no temporal mapping (no_tm) is formalized in (8).  
corresponds to the mean modeling error for a single picture 
transition and temporal mapping.  is the mean error 
for a single picture transition and no temporal mapping. The 
regions obtained before and after temporal mapping are 
referred to as  and  respectively. An exemplary 
segmentation result is shown in Fig. 2, where the largest 
motion is executed by the foreground object, Stefan, and in 
some areas of the background as indicated by the labels in 
the mask (cf. Fig. 2, right). The largest homogeneous picture 
area refers to the background featuring rigid, i.e. no local 
motion 

7. EXPERIMENTAL RESULTS 
The benchmark of the spatio-temporal segmentation 
algorithm presented in this work is conducted by operating a 
comparative evaluation w.r.t. the COST 211quat Analysis 
Model (AM) developed by an European research forum with 
the aim to increase the acceptance of content-based 
functionalities provided by MPEG-4 and MPEG-7 [1]. For 
objective evaluation, the quality measures introduced by 
Huang and Dom [10] are used. They split the automatic 
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segmentation evaluation into region-based and boundary-
based quality assessment. The discrepancy between true and 
segmented regions or contours is thereby measured. Two 
region-based measures are defined, i.e. the missing region 
error rate , and the false region error rate . Similar 
measures,  and , are defined for boundary-based 
quality measurements. Additionally,  and , resp. the 
false and the missing boundary weights, determine the 
distance between the misclassified samples and the ground 
truth boundary. 

 
Fig. 3. Boxplots of Huang and Dom’s measures for the 
“Stefan” sequence 
Seven test sequences, at CIF resolution (352x288), are 
considered for the comparative evaluation. Namely “Bus”, 
“Canoe”, “Coast Guard”, “Container Ship”, “Football”, 
“Foreman”, and “Stefan”.  For “Coast Guard”, “Foreman”, 
and “Stefan”, the segmentation masks provided by MPEG-4 
are used as reference. Manual segmentation is done for the 
remaining test sequences. Each of the texture analysis 
modules is tuned to achieve the best possible result for all 
test sequences given a single configuration.  
For each of the considered test sequences, it is found that the 

 value of the proposed algorithm (referred to as “A” in 
Fig. 3) is significantly lower than the same error rate for the 
COST AM. At the same time, our algorithm typically yields 
significantly lower  values compared to the AM. This 
shows that ground truth boundaries can be more accurately 
found with the proposed algorithm. Furthermore, the missed 
(true) boundary samples are also very much closer to the 
algorithm’s boundaries compared to the AM. However, our 
algorithm tends to generate higher  values than the 
AM (cp. Fig. 3). This negative outcome is yet attenuated by 
the fact that the proximity ( ) of the algorithm’s false 
boundary samples to the ground truth boundaries is, in 
general, significantly higher compared to the AM.  
Region estimation evaluation shows that, in general, the 
false region error rate  is significantly lower for the 

algorithm than for the AM (cp. Fig. 3). On the other hand, 
the missing region error rate  is typically significantly 
higher for the algorithm than for the AM. Given the 
definition of  and , this indicates that the algorithm is 
more prone to over-segmentation than the AM. 
The bottom line of the evaluations is that regions found by 
our algorithm are more reliable than those found by the AM, 
i.e. the probability that the automatically segmented regions 
match the ground truth segmentation masks is higher for the 
proposed algorithm. The true region boundaries are 
moreover better detected by our algorithm. 

8. CONCLUSIONS 
A new spatio-temporal segmentation approach has been 
presented in this paper. The algorithm is robust due to an 
incorporated M-estimation process and subsequent 
constrained segment merger and contour refinement 
decisions. The proposed method is, however, prone to over-
segmentation, which may be explained by a too rigorous 
merger criterion. Although the evaluations yield an overall 
favorable outcome for the proposed algorithm, it cannot be 
ignored that some of the absolute error rates can be seen as 
relatively high. Hence, long-term motion analysis and a 
more efficient exploitation of available motion information 
for tracking via corresponding MPEG-7 descriptors will be 
considered in our next implementations. Less conservative 
merger criteria  will be evaluated to avoid over-
segmentation. 
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