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ABSTRACT

This paper presents a physics-based approach capable of detecting
cast shadows in video sequence effectively. We develop a new phys-
ical model of cast shadows without making prior assumption of the
spectral power distribution (SPD) of the light sources and ambi-
ent illumination in the scene. The background appearance varia-
tion caused by cast shadows is characterized as the interaction of
the blocked light sources and the background surface reflectance.
We then take advantage of the statistical prevalence of cast shadows
to learn and update the shadow model parameters using the Gaus-
sian mixture model (GMM) over time. The proposed algorithm is
completely unsupervised and can adapt to specific environment with
complex illumination condition as well as changing shadow condi-
tions. Experimental results on three challenging sequences demon-
strate the effectiveness of the proposed method.

Index Terms— Visual surveillance, Object detection, Moving
Cast Shadow Detection

1. INTRODUCTION

Detection of moving objects is an important low-level vision task
for many vision-based applications. One of the most challenging
problems in these applications is identifying cast shadows in video.
Cast shadows are often misclassified as parts of foreground regions,
resulting in distortion of the true shape and color properties of the
target objects. An effective shadow detection method is thus neces-
sary for accurate foreground segmentation.

Moving cast shadows are caused by the occlusion of light
sources. Shadows reduce the total energy incident at the background
surfaces where the light sources are partially or totally blocked by
the foreground objects. Hence, points under shadows have lower
luminance values but similar chromaticity values compared to their
reference background points.

Many works have been proposed for cast shadow detection.
Most of them are based on the assumption that the RGB values of
shadow pixels will fall on the line between the illuminated values
and the origin in the RGB color space (linear model). This linear
model has been employed in different color spaces [1, 2, 3]. One
main limitation of these methods is that they require explicit tuning
in a large set of parameters for each new scene and are difficult to
work for on-line applications. To adapt to environment changes,
statistical learning methods have been employed to describe the cast
shadows [4, 5, 6]. However, the linear model assumption may not
be fulfilled in a real-world environment. For instance, in an outdoor
scene the illumination may consist of direct sunlight, the diffused
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light scattered by the sky, and other colored light from nearby
surfaces (i.e. color bleeding). These lights can have significantly
different spectral power distributions (SPD). Therefore, the RGB
value of a shaded pixel may not attenuate linearly along the line
between the value of the corresponding background and the origin.

Little attention has been directed toward this problem before.
Nadami et al. [7] addressed this non-linearity by dichromatic reflec-
tion model for both the sun and the sky illuminations in an outdoor
scene. However, the method is designed only for an outdoor envi-
ronment. Recently, a more general shadow model was presented in
[8]. This model introduced an ambient illumination term which de-
termines a direction in the RGB space where the background values
under cast shadows can be found. Since the ambient term may have
spectrum which differs from the incident light sources, the values of
the shaded pixels may not be proportional to the values under direct
light. Nonparametric density estimation is used to model the surface
variation under cast shadows in an unsupervised way. By provid-
ing a better description of cast shadows on background surfaces, the
shadow model presented in [8] considerably improved the previous
approaches based on linear model. However, in [8] the SPDs of all
light sources are assumed having the same profile but with different
power factor.This assumption may not be hold for many of the real-
world cases. In addition, the ambient illuminations are assumed to
be constant, but they may be slightly changed due to circulation of
foreground objects.

In this paper, we extend the shadow model presented in [8] by
releasing these assumptions. The proposed shadow model is more
general and can be applied to real-world cases more appropriately.
However, a more general model may suffer from a longer period of
time for learning the model parameters. To address this problem,
we introduce the confidence-rated Gaussian mixture learning which
accelerates the parameters convergent rate. Moreover, we observe
that shadows on the light/shadow borders show different behavior
from shadows inside the shaded region. The shadows detection rate
can be further improved by addressing this issue.

The remainder of this paper is organized as follows. We first
propose in Section 2 a new physical model for describing appearance
variation of a background value under cast shadows. Based on the
proposed model, we present an unsupervised learning approach to
learn the behavior of cast shadows on surfaces by taking advantage
of the statistical prevalence of shadows in Section 3. In Section 4,
we derive the posterior probability of cast shadows and foreground
given an observed sample. Experimental results are presented in
Section 5. Section 6 concludes the paper.

2. PHYSICAL MODEL FOR CAST SHADOWS

According to the Lambertian model, the camera sensor response
gk(p), k ∈ {R, G, B} at pixel p depends on the intensity func-

769978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009



(a) (b)

Fig. 1. Physical cast shadow model. (a) Linear attenuation model
and the proposed model. The linear model will fail when the SPD
of ambient illumination does not consistent with that of the light
sources. (b) Background appearance variation due to cast shadows.

tion of the light sources E(λ, p), the reflectance of an object surface
ρ(λ, p), and sensor spectral sensitivity Sk(λ):

gk(p) =

∫
E(λ, p)ρ(λ, p)Sk(λ)dλ. (1)

We describe the illumination incident to a surface point p by N light
sources and lights reflected from M ambient objects (the position p
is ignore):

E(λ) =

N∑
n=1

Eincident,n(λ) +

M∑
m=1

Eambient,m(λ). (2)

For a color camera with a linear response, the response to a specific
illumination follows a line in the RGB space. We show our model
in Fig. 1(a), where BGA is the ambient term from the contribution
of all ambient lightings and BG is the background surface value.
The zigzag lines starting from BGA and ending at BG represent
the response from the incident light sources. Based on the additive
color model, their net effect forms the vector from BGA to BG.
Note that in this model, the ambient illumination can have different
SPDs from that of the total contribution of incident light sources (i.e.
the direction of BGA may not be consistent with the direction from
BGA to BG). In addition, the SPD of individual light source may
differ from that of other light sources.

In comparison, in [8] the SPDs of the incident light sources are
assumed sharing the same profile. That is, the first term in (2) de-
generates into Eincident(λ)

∑N
n=1 γn, where γn is the scaling fac-

tor of the nth light sources. Moreover, the ambient illumination is
assumed to be constant. Under these two assumptions, all shadow
values are expected to be found on the line between background BG
and the ambient value BGA. This approach may fail to deal with
environment with complex illumination conditions.

Given a surface point, the background surface value variation
under cast shadows is resulted from the occlusion of lights by fore-
ground objects. The blocked lights may contain partial or total direct
incident light sources and some reflected lights from nearby ambient
objects. Here, some of the incident lights will disappear since they
are blocked by foreground objects. The first term in (2) is then re-
duced to

∑N
n=1 Eincident,n(λ) − ∑

n∈blocked Eincident,n(λ). The
ambient lights are also changed slightly due to the circulation of
foreground objects. Therefore, according to (1), the vector from the
shadow value (i.e. SD in Fig. 1) to its corresponding background
value can be interpreted as the interaction between the blocked lights
and surface reflectance (see Fig. 1(b)).

For a pixel p at time t, the vector from shadow to background
value is denoted as vt(p). The vector vt(p) is the net response

from the contribution of the blocked incident and ambient illumina-
tions. We then develop a 3D color feature of cast shadows xs,t(p) =
[αt(p), θt(p), φt(p)]T to encode this information, where αt(p) rep-
resents the illumination attenuation and θt(p) and φt(p) indicate the
direction of the vector vt(p) in spherical coordinate. Similar to Hor-
prasert et al. [1], we define the illumination attenuation αt(p) by

αt(p) =
||vt(p)||

||BGt(p)|| , (3)

where BGt(p) is the background value at the pixel p. The illumi-
nation attenuation, which is smaller than one, describes the strength
of brightness of the blocked lights with respect to that of the back-
ground value. The direction of the vector vt(p), the chromaticity
line direction, is determined by θt(p) and φt(p):

θt(p) = arctan(
vG

t (p)

vR
t (p)

), φt(p) = arccos(
vB

t (p)

||vt(p)|| ), (4)

where the superscript R, G, B indicate the components in the RGB
space. We can use this 3-D color feature vector vt(p) to describe the
appearance variation induced by the blocked light sources on shaded
regions. Unlike [8], our model takes the variation of chromaticity di-
rection into consideration and thus better describes the cast shadows
on background surface.

Since different foreground objects often block the light sources
in a similar way, cast shadows on background surfaces are thus sim-
ilar and uncorrelated with foreground objects. We present in the fol-
lowing section how to learn the cast shadow model in a completely
unsupervised way.

3. LEARNING AND DETECTING CAST SHADOWS

Shadow detection methods with fixed parameters can not adapt to
time-varying illumination. In this paper, we use Gaussian mixture
model (GMM) [9] to model cast shadows by using scene activities.
We first apply weak shadow detector to moving pixels detected by
background model to select possible shadow samples. The color fea-
tures of these possible shadow pixels are then learned by GMM over
time. Then, we can detect shadows by using the learned shadow
model.Note that our approach is pixel-based, model the SPDs of
ambient lighting and light sources locally, and thus can deal with
environment with complex illumination conditions.

3.1. Weak Shadow Detector

To model the cast shadows, impossible shadow samples that belong
to background and foreground should be excluded. Therefore, we
apply a weak shadow detector that evaluates every moving pixels de-
tected by the background model to filter out some impossible shadow
samples. Since cast shadows on surface reduce luminance values and
change the saturation, we define the potential shadow values fall into
the conic volume around the corresponding background color [4].

The weak shadow detector is applied to moving regions detected
by the background model to obtain possible shadow points. We call
these possible shadow points as “shadow candidates”, which form
the set Q. At the pixel level, we model xs,t(p), p ∈ Q using the
GMM to learn the color feature of shadows.

3.2. Spatial Information

With the proposed physical shadow model, we can accurately de-
scribe the appearance variation of background surface under shad-
ows at the pixel level. However, two shortcomings remain. One
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Fig. 2. Color feature value distribution of shadows inside (in red)
and at the light/shadow border (in blue). Samples are taken from
the sequence “Highway I”. (a) Illumination attenuation αt(p) (b)(c)
angle information: θt(p), and φt(p), respectively.

is that the proposed shadow model may suffer from slow learning
of model parameters if motion is rare on a pixel. With the con-
ventional Gaussian mixture learning [9], training the pixel-based
shadow model requires a long time while the illumination conditions
should remain stable. The other problem arises from foreground ob-
jects having similar colors as background, which may be misclassi-
fied as cast shadows. Therefore, we propose to incorporate spatial
information for improving the shadow discriminative ability and the
convergent rate of the model parameters.

In addition to the illumination attenuation, when a surface point
is shaded, the gradient intensity around the point will also be smaller
than that of the illuminated surface. Consequently, points having
larger gradient intensities than background are more likely to be
considered as foreground objects. We thus penalize these samples
by lessening the learning rate in this situation. We define a con-
fidence value of shadow using spatial gradient intensities of back-
ground |∇(Bt)| and current image |∇(It)|:

ωt(p) =
ε + |∇(Bt(p))|

ε + max{|∇(It(p))|, |∇(Bt(p))|} , (5)

where ε is a smooth term to alleviate the effect of noise in textureless
regions. Thus, we can discriminate foreground objects with similar
color as background from shadow with the aid of gradient informa-
tion. To improve the convergent rate, we use ωt(p) as the confi-
dence value to update the GMM at pixel p through confidence-rated
learning. In [10], Lee has shown that fast updating can be achieved
by combining recursive filter type of learning with incremental EM
in background modeling. We propose to weight these two learning
scheme using the confidence value ωt(p) extracted from spatial do-
main [11]. If ωt(p) is large, the learning rate depends more on the
formulation of incremental EM algorithm, which converges quickly
with few observations. On the other hand, if ωt(p) is small, the
learning rate follows the recursive type of learning to maintain model
stability.

3.3. Shadows at Light/Shadow Border

Once the shadow model for a pixel p is built, we can estimate
the likelihood of the observation belong to shadows by checking
whether the 3-D color feature vector xs,t(p) is associated with one
of the working Gaussian distribution in the mixture. However, if the
light sources are clustered in the scene and are relatively brighter

than ambient illumination, blocking them induces a sharp shadow.
In this case, shadows at light/shadow border show different behavior
from shadows inside the shaded region. This is caused by the in-
sufficient resolution of CCD camera. Pixels at light/shadow border
may receive part of energy from light sources. We demonstrate this
observation in Fig. 2. We first collected shadow samples throughout
the sequence “Highway I”. Shadow border pixels can be detected
from background posterior image where large gradient intensities
are present. We classify these shadow samples into two groups:
“inside” and “at border”. Fig. 2(a) presents that the illumination
attenuation have significantly different distribution for shadows at
border and inside. On the other hand, Fig. 2(b)(c) show that the
distribution on angle information are very similar. The reason is
that neighboring pixels often receive incident energies with similar
SPDs.Consequently, we propose to address shadows at border by
evaluating only their angle information.

4. POSTERIOR PROBABILITIES

In this section, we present how to derive the posterior probabilities of
cast shadows and foreground given the observed sample xt(p) using
the proposed shadow model and spatial information.

4.1. Cast Shadow Posterior

The shadow posterior is first computed by decomposing P (SD|xt(p))
over (BG, FS) domain, where FS indicates moving pixels (real
foreground and cast shadows). Since P (SD|xt(p), BG) = 0, the
decomposition is

P (SD|xt(p)) = P (SD|xt(p), FS)P (FS|xt(p)), (6)

where P (FS|xt(p)) = 1 − P (BG|xt(p)) can be directly com-
puted from the background model. Second, we remove pixels that
are definitely foreground and consider only shadow candidate (SC).
Also, we penalize pixels whose gradient intensities are amplified
instead of reduced by multiplying ωt(p): P (SD|xt(p), FS) =
P (SD|xt(p), FS, SC) ∗ ωt(p). Here, the color feature vector
xc,t(p) is the sufficient statistics for the observed sample xt(p).
Therefore, we have P (SD|xt(p), FS, SC) = P (SD|xc,t(p), FS, SC).
As mentioned in section 3, we learn the cast shadows using the
GMM [9]. The posterior probability can be expressed in terms of
the mixture components in GMM:

P (SD|xc,t(p), FS, SC) =
∑

k

P (SD|Gk)P (Gk|xc,t(p)), (7)

where Gk is the kth Gaussian state in the mixture. Given the ob-
servation that color change due to objects has higher variance com-
pared to the color change due to cast shadows, Gaussian states with
higher prior probabilities and smaller variances would be considered
as shadows. Therefore, we approximate P (SD|Gk) using logistic
regression similar to that in [10] for background subtraction.

4.2. Foreground Posterior

Computing foreground posterior probability is much easier. Given
a pixel p at time t, we first compute the background posterior
P (BG|xt(p)) from the background model. Then, we can ob-
tain shadow posterior probability P (SD|xt(p)) using the learned
shadow model. Based on the probability theory, the foreground
posterior can be obtained as:

P (FG|xt(p)) = 1 − P (BG|xt(p)) − P (SD|xt(p)). (8)
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Fig. 3. Visual results of the proposed algorithm. (a) Original
frame. (b) Background posterior P (BG|xt(p)). (c) Shadow pos-
terior P (SD|xt(p)). (d) Foreground posterior P (FG|xt(p)).

Table 1. Quantitative results on surveillance sequences

Sequence Highway I Highway II Hallway

Method η% ξ% η% ξ% η% ξ%
Proposed 72.34 84.98 72.70 79.89 71.69 88.25

Kernel [8] 70.50 84.40 68.40 71.20 72.40 86.70

LGf [6] 72.10 79.70 - - - -

GMSM [5] 63.30 71.30 58.51 44.40 60.50 87.00

5. EXPERIMENTAL RESULTS

We validate the proposed method on three challenging video se-
quences. Both visual results and quantitative measurement are
presented. We compare our algorithm quantitatively with previous
shadow detection methods when results are available. The effect of
considering shadows at light/shadow border is also present.

5.1. Assessing Shadow Detection Accuracy

We show in Fig. 3 the visual results of three video sequences from
the proposed algorithm. Fig. 3(a) shows one frame from the se-
quence. The background, shadow, and foreground posterior are
given in Fig. 3 (b)(c)(d), respectively. We can see that in all three
test sequences the cast shadows are correctly detected.

We evaluate our method through the quantitative metrics (shadow
detection η% and discrimination rate ξ%) proposed in [12]. For ex-
act equations, please refer to [12]. We report our results in Table
1 and compare them with recent works using statistical method to
detect shadows. Our method can achieve higher shadow detection
and discrimination rate than the state-of-the-art approaches, where
the quantitative results of previous works are directly taken from [8]
and [6].

5.2. Effect of Shadows at Shadow/Light border

We show the visual results with and without considering shadows at
shadow/light border. Fig. 4(a) is a traffic scene where sharp shad-
ows are induced when blocking strong light sources (e.g. sun). Fig.
4(b) shows the foreground posterior without taking shadows at bor-
der into consideration. Shadows at border are misclassified as fore-
ground due to the distinct distribution of color feature values. On the
other hand, in Fig. 4(c), shadows at border can be correctly detected
when evaluating their angle information only.

(a) (b) (c)

Fig. 4. Effect of shadows at shadow/light border (a) Original frame
of sequence ”Highway I”. (b)(c) Foreground posterior without/with
considering shadows at shadow/light border.

6. CONCLUSION

In this paper, we have introduced a novel physical model for cast
shadow detection in video sequences. Qualitative and quantitative
evaluation of the physical shadow model validate that our approach
is more accurate in describing background surface variation under
cast shadows. Spatial information is used to help discriminat-
ing foreground with similar chroma from cast shadows as well
as improving the convergent rate of the shadow model through
confidence-rated learning. We also address the problem of shadows
at light/shadow border where these shadows have different behavior
from other regions. Note that the proposed approach is pixel-based;
a contextual model that incorporate spatial and temporal coherence
can further enhance the performance.
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