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ABSTRACT 
 
Recently, the covariance region descriptor [1] has been 
proved robust and versatile for a modest computational cost. 
It enables efficient fusion of different types of features. 
Based on the covariance descriptor and the metric on 
Riemannian manifolds, we develop a robust Bayesian 
tracking framework via fragments-based representation in 
this paper. In this framework, the template object is 
represented by multiple image fragments or patches. Every 
patch votes on the possible state of the object in the current 
frame, by comparing its covariance descriptor with the 
corresponding image patch model. Tracking is then led by 
the Bayesian state inference framework in which a particle 
filter is used for propagating sample distributions over time. 
The weight of each particle is formulated by combining the 
votes of the patches using a robust statistic. Further, we 
extend the fast covariance computation to the Bayesian 
tracking problem, which makes the tracking procedure more 
efficient. We present extensive experimental results on 
challenging sequences, which demonstrate the robust 
tracking achieved by our algorithm. 
 

Index Terms— Particle filter, Riemannian manifolds, 
covariance descriptor, integral image, Bayesian tracking 
 

1. INTRODUCTION1 
 
Object tracking is a critical task in many computer vision 
applications such as surveillance, augmented reality and 
human-computer interfaces. Target representation is one of 
major components for a typical visual tracker. Extensive 
researches have been done on this topic. 

Histograms have been proved to be a powerful 
representation for an image region. Discarding the spatial 
information, the color histogram is robust to the change of 
object pose and shape. Several successful tracking systems 
have been developed using color histograms [3, 4]. Recently, 
Stanley et al. [5] proposed a novel histogram named 
spatiogram in which each bin is spatially weighted by the 
mean and covariance of the locations of the pixels that 
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contribute to that bin. Spatiogram captures not only the 
values of the pixels but their spatial relationships as well. To 
calculate the histogram efficiently, Fatih [6] proposed a fast 
way to extract histograms called integral histogram. When 
the integral histogram has been constructed, the histogram 
of any rectangular region can be computed efficiently 
independent of the region size. Recently, Mikhail et al. [10] 
proposed a novel multi-scale histogram-based search 
algorithm, termed the distributive histogram, which can be 
evaluated exhaustively in a faster and memory more 
efficient manner than integral histogram. 

The covariance region descriptor recently proposed in [1] 
has been proved robust and versatile for a modest 
computational cost [2, 7]. The covariance matrix enables 
efficient fusion of different types of features with low 
dimensionality. An object window is represented as the 
covariance matrix of features; the spatial and statistical 
properties as well as their correlation are characterized 
within the same representation. The similarity between two 
covariance matrices is measured on Riemannian manifolds. 
Fatih [2] generalized the covariance descriptor to tracking 
problem by simply exhaustive searching in the whole image 
for the region that best matches the model descriptor. This 
maximal likelihood estimation is very time-consuming and 
easily runs into problems by the background clutter. 
Furthermore, the spatial information encoded in the 
covariance descriptor is soft, so it cannot handle well partial 
occlusions.  

Improvement for such situations is one of the benefits of 
our proposed robust Bayesian tracking approach. Relying on 
the same metric to comparing two covariance descriptors, 
we embed it within a sequential Monte Carlo framework 
and extend the fragments-based representation [9] to the 
particle filter implementation. The sample-based filtering 
technique enables to track multiple posterior modes, which 
is the key to escape from background distraction. Through 
encoding hard spatial constraint, the fragments-based 
representation is robust to partial occlusion. Furthermore, 
we extend the fast covariance computation to tracking 
problem with the help of integral image, which makes the 
tracking procedure more efficient.  

 
2. COVARIANCE DESCRIPTOR 
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The covariance region descriptor proposed in [1] enables 
efficient fusion of different types of features and its 
dimensionality is small. In this descriptor an object window 
is represented as the covariance matrix of features. The 
spatial and statistical properties as well as their correlation 
are characterized within the same representation. 

Let I be the observed image, and F be the 
dimensional feature image extracted from I 

                                    (1) 
where  can be any mapping such as color, gradients, filter 
responses, etc. Let  be the d-dimensional feature 
points inside a given rectangular region R of F. The region R 
is represented by the  covariance matrix of the feature 
points 

                (2) 
where  is the number of pixels in the region R.  is the 
mean of the feature points. 

The element  of  represents the correlation 
between feature i and feature j. When the extracted d-
dimensional feature includes the pixel’s coordinate, the 
covariance descriptor encodes the spatial information of 
features.  

For the tracking issue in this paper,  is formulated 
as: 

      (3) 
where (x, y) is the pixel location, R, G, B are the RGB color 
values  and ,  are the intensity derivatives. Consequently, 
the covariance descriptor of a color image region is a 7 × 7 
symmetric matrix. 
 

3. METRIC ON RIEMANNIAN MANIFOLDS 
 
Supposing no features in the feature vector would be exactly 
identical, the covariance matrix is positive definite. Thus the 
nonsingular covariance matrix can be formulated as a 
connected Riemannian manifold. A manifold is locally 
similar to a Euclidean space. For differentiable manifolds, 
the derivative at a point X lies in a vector space TX, the 
tangent space at that point. Each tangent space has an inner 
product  and the norm for a tangent vector is defined by 

. 
An invariant Riemannian metric on the tangent space is 

defined as 
                         (4) 

The exponential map associated to the Riemannian 
metric is given by 

                     (5) 
The logarithm uniquely defined at all the points on the 

manifold is 
                     (6) 

For a symmetric matrix, the exponential is given by 

                  (7) 

Similarly, the logarithm series is  

           (8) 
where  is the eigenvalue decomposition of the 
symmetric matrix .   and  are the diagonal 
matrix of the eigenvalue exponentials and logarithms 
respectively. 

The distance between symmetric positive definite 
matrices is measured by [11] 

 

               (9) 

 
4. BAYESIAN TRACKING 

 
In the Bayesian perspective, object tracking can be viewed 
as a state estimation problem. The purpose of tracking is to 
estimate , which stands for the distribution of 
target state  given all observations  up to time t.  

The density propagation of  can be formulated 
by the well-known two-step recursion: 

Prediction:  

Update:                (10) 

For visual tracking problems, the recursion can be used 
within a sequential Monte Carlo framework where the 
posterior  is approximated by a weighted sample 
set , where . All the particles are 
sampled from a proposal density . The weight 
associated with each particle is formulated by: 

                       (11) 

To prevent the weights from degenerating, we resample 
the particles to obtain the unweighted particle set 

. 

The common choice of the proposal density is by taking 
. As a result, the weights 

become the local likelihood associated with each state 
. The Monte Carlo approximation of the 

expectation  is used as the 
state estimation at time t. 

 
4.1. Target dynamics modeling 
 
Our aim is to track a region of interest in the image plane. 
The shape of this region is defined by a rectangle. The state 
is defined as , where  is the location, 

 represents the object size and  is the 
velocity. 

Commonly a first-order (B=0) or second-order auto-
regressive dynamics is chosen to model the state transition: 
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                (12) 
Matrices A, B, C and Σ defining this dynamics could be 
learned or be set manually. Because these parameters are 
difficult to learn, the AR dynamics is not suitable for our 
case. We propose the following scheme to predict the state. 

             (13) 

where u is a random number from distribution , 
,  is the location of the nth particle in time t, 

 is the tracked target location in time t-1, ,  are 
the velocities of the nth particle in time t and t-1, respectively. 

After that, we add small random disturbance to the 
predicted state . The benefit of this prediction technique 
is that it avoids the difficult estimation of the matrices in the 
AR dynamics and puts no constraint on the motion of targets. 
 
4.2. Fragments-based representation 
 
To handle the problem of partial occlusion, the template 
object is represented by multiple image parts or patches to 
reflect spatial relationships. Since the original formulation 
of the fragments-based representation [9] is not suitable for 
the particle filter implementation, we extend this 
representation to Bayesian tracking in this paper. 

The target is represented by a template image T. Let PT = 
(dx, dy, h, w) be a rectangular patch in the template, where  
(dx, dy) is the displacement from the template center, and w 
and h are the width and height respectively. Let (x, y) be a 
hypothesis on the target’s position in the current frame. 
Then the patch PT defines a corresponding rectangular patch 
in the image PI;(x,y) with the center at (x+dx, y+dy) and width 
w, height h. Given the patch PT and the corresponding one 
PI;(x,y), the similarity between the patches is an indication of 
the validity of the hypothesis that the target is indeed located 
at (x, y). If d(Q, P) is some measure of similarity between 
patch Q and patch P, then the vote of the patch PI;(x,y) for the 
hypothesis is  

                     (14) 
For the Bayesian tracking, we denote the number of 

patches by NP, the patch set of the target template by 
 . Each hypothesis or particle  is partitioned to NP 

patches . The distance between two corresponding 
patches is measured by 

                               (15) 
where  is the metric defined in (9). Thus, for each 
particle we have votes  

Now, we want to combine the votes obtained from all 
template patches. A simple solution is to sum the votes, the 
drawback of which is that an occlusion affecting even a 
single patch may contribute a high value to the sum at the 
correct position, resulting in a wrong estimate. In other 
words, we would like to use a robust estimator which could 
handle outliers resulting from occluded patches or other 
reasons (e.g. partial pose change, such as a person turns his 
head). 

For each particle, we order the obtained votes   
and choose the Q’th smallest score, which is denoted by , 
as the vote for the particle. 

Intuitively, the parameter Q is the maximal number of 
patches that we always expect to yield inlier measurements. 
If we are sure that occlusions will always leave at least a 
quarter of the target visible, then we will choose Q to be 25% 
of the number of patches, namely, assuming that at least a 
quarter of the patches will be visible.  

Consequently, the local likelihood is formulated as: 
                       (16) 

 
4.3. Fast computation  
 
With the help of integral images, the covariance descriptor 
can be calculated efficiently. When d(d+1)/2 integral images 
are constructed, the covariance descriptor of any rectangular 
region can be computed independent of the region size.  

In the Bayesian tracking problems, the tracked object 
only occupies small part in the image, as shown in Fig.1. If 
we compute the integral images for the whole image, many 
computation resources would be wasted. Observed from our 
experiments, more than 60% of the computation time is used 
to construct the integral images. Therefore, we only 
compute the integral images in the region which is occupied 
by all the particles. This technique makes the tracking 
procedure more efficient. 

 
  

Figure 1: The state of target is shown by a red rectangle, and the 
corresponding particles are illustrated by white rectangles (totally 
100 particles). 
 

5. EXPERIMENTAL RESULTS 
 
In all the experiments reported in this paper, we fixed the 
parameter  of the local likelihood in (16) to the same value 

. The vertical and horizontal patch structure is chosen 
to be the same as [9], and the template is fixed at the first 
frame and not updated. 

The face sequence in Fig. 2 shows the robustness to 
partial occlusions. The quantitative comparison results are 
displayed in Fig. 3, from which we see that the tracking 
error of our approach is always lower than that of [2], which 
benefits from the fragments-based representation. The 
pedestrian sequence in Fig. 4 shows the robustness to 
background distraction and illumination changing. The 
histogram used in [9] cannot distinguish the target from the 
background, while the covariance descriptor can distinguish 
them effectively. 
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To illustrate the robustness against noise, we 
contaminated the color values with additive zero mean 
Gaussian noise with standard deviation , where 
sample results are shown in Fig.4. We can see that the 
performance of the color-based tracker [4] significantly 
degrades, while our proposed approach tracks the target 
successfully. This owe to the average filter during 
covariance computation which has also been pointed out in 
[2]. 

 
6. CONCLUSION 

 
Embedding the covariance-based tracker within a 
probabilistic framework and employing the fragments-based 
representation, we further improve the tracking robustness 
and speed. Experiments and comparisons show the robust 
tracking performance under partial occlusions, as well as 
background distraction. 

The proposed Bayesian tracker is much more suitable for 
multi-target tracking which is our ongoing work. Due to the 
integral images used for fast calculation of covariance 
matrix, when tracking multi-object, the computational cost 
grows less than the linear of the tracked target number. 
When Covariance-based object detector [7] is used to 
initialize the targets, the computational cost would lower 
than the independent detector and tracker. This is because 
the detector shares the same base features (integral images) 
with the tracker. Furthermore, the boosted particle filter [8] 
can also be used to improve the multi-object tracking 
performance. 
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Frame 317 Frame 539 Frame 853
 

Figure 2: face sequence: The tracking results of [2] (row 1) and our 
approach (row 2). 

 
Figure 3: The quantitative comparison results of our approach and 
[2] on face sequence. 

 

Frame 39 Frame 52 Frame 62

  
Figure 4: pedestrian sequence: The tracking results of [9] (row 1) 
and our approach (row 2). 

Frame 29 Frame 61 Frame 89  
Figure 5: car sequence: The tracking results of [4] (row 1) and our 
approach (row 2). 
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