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ABSTRACT

Visual tracking with explicit occlusion models is computa-

tionally hard, in the sense that the complexity explodes as

the number of targets increases. Recently, the Hybrid Joint-

Separable (HJS) model has been proposed that enables track-

ing the local appearance of a number of bodies through oc-

clusions with a quadratic, no more exponential, upper bound.

In this paper we extend that method to account for a larger

spectrum of visual interactions, captured by a full-image like-

lihood enabling true Bayesian inference, without compromis-

ing scalability. The resulting tracker then proves to be signif-

icantly more robust, and able to resolve long term occlusion

among five people aligned on a single line-of-sight, observed

from a single camera, at a manageable computational cost.

Index Terms— Visual tracking, Occlusion, Particle filter

1. INTRODUCTION

Visual inference in unconstraint scenes is always affected by

uncertainty and ambiguity. This is of particular concern when

tracking multiple bodies: uncertainty and ambiguity may de-

rive from inaccurate interpretation of images, but can also be

intrinsic in the measurement process, e.g. when occlusions

exist, or in the monitored scene itself, e.g. when targets ap-

pear similar or clutter is present in the background. Bayesian

methods allow to account for this in a principled way by rep-

resenting estimates in form of distributions and relying on

generative models of the observation process. Occlusions

among tracked targets, which are recognized to represent a

major source of failure for tracking systems, can then be mod-

eled explicitly [1, 2]. When it comes to implementation, how-

ever, a computational problem is faced. Propagating the joint

statistics of the different targets using generic representations

is computationally hard, in the sense that the complexity be-

comes exponential in the number of bodies.

Many attempts have been made to find manageable solu-

tions to multibody tracking. Partitioned sampling [2] avoids

the high computational load associated with the joint ap-

proach by decomposing the joint state space into 1-body sub-

spaces and performing updates separately and consecutively

on them. In [3], only the Probability Hypothesis Density
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(PHD) of the multitarget posterior, i.e. its first moment, is

propagated and its particle filter formulation becomes practi-

cal. In BraMBLe [1] estimation is accomplished jointly, in an

expanded space that includes a discrete dimension reporting

the number of tracked targets. Mixture tracking is proposed

in [4], where each target is tracked as a single mode of a

unique, multimodal distribution defined on a 1-body state

space. A strategy for sampling in high dimensional spaces is

proposed in [5], where a family of increasingly peaked likeli-

hood functions are used to explore the state space gradually.

Our contribution here is over an approximate approach to

multibody tracking [6]. The salient property of that approach

is that it allows for tractable inference which is understood

and theoretically grounded, and that it scales to input com-

plexity, i.e. number of targets. A major limitation is a con-

straint on the likelihood function, which can account for the

targets’ local appearance only. As a consequence of that, the

filter operates sub-optimally under a number of imaging con-

ditions which occur frequently in practice. This work targets

this limitation, and, to wipe it out, we show how to embed

a more effective likelihood that accounts for a larger spec-

trum of visual interactions. While a straightforward upgrade

of the standard HJS algorithm relapses it back to exponential

complexity, we show how to maintain the inference tractable,

preserving a quadratic upper bound, which is our key result.

Paper organization. Sec. 2 reviews the HJS framework,

and reformulates the likelihood to accomodate our core con-

tribution, which is presented and motivated in Sec. 3. Experi-

ments are reported in Sec. 4, while Sec. 5 has the conclusions.

2. HJS VISUAL MULTIBODY TRACKING REVISED

Given a vectorial representation x of the state of a moni-

tored environment in terms of object configurations it is com-

posed of, the aim of Bayesian tracking is to estimate, at each

time t, the posterior distribution p(xt|z1:t) conditioned on

a sequence of observations z1:t obtained up to t. This is

done sequentially, by first propagating the posterior obtained

at the previous time, p(xt−1|z1:t−1), according to a model

p(xt|xt−1) of expected dynamics, and then updating it with

the evidence contained in the new observation zt according to

a model l(zt|xt) of the measurement process:

p(xt|z1:t) ∝ l(zt|xt)
∫

p(xt|xt−1)p(xt−1|z1:t−1) dxt−1
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Since the complexity of computing this recursion in-

creases exponentially with the size of x, a fully joint formula-

tion of the multibody problem becomes intractable even with

a moderate number of targets. In particular, computing a reli-

able form of likelihood for a reasonably sized representation

of the prior becomes prohibitively expensive. To allow for a

tractable solution, the Hybrid Joint-Separable (HJS) model

has been proposed. Instead of maintaining distributions in

their joint form, a factorial representation in form of product

of marginals p(xk
t |z1:t) =

∫
p(xt|z1:t)dx�k

t is estimated re-

cursively (xk is the state of target k; x�k is x with component

k removed). Although sub-optimal, this model enables for

robust tracking through visual occlusions at an affordable

computational cost. This is possible because updating the

marginals does not require, per se, explicit computations in

the joint domain. To show this we introduce a likelihood that

accounts for (i) visual occlusions, and (ii) statistical indepen-

dence of object blobs (details are in Sec. 3):

− log l(z|x) =
∑

k

Lk(z|ωk
x), (1)

where [ωk
x]u represents a binary mask assuming values 1 in

pixels u where target k is the closest to the camera, while

Lk describes some generic form of visual dissimilarity of the

portion of z with support ωk
x and a reference model of target

k, e.g. a distance between color histograms. If x conveys

information about the targets’ distance to the camera, then

ωk
x, which encodes data association under x, can be computed

using shape projections. Therefore, we (i) describe the state

of each target by its position on a horizontal reference plane

(e.g. the floor), (ii) adopt a generalized-cylinder model for

target shape, and (iii) assume calibrated camera.

It has been shown [6] that, with the range of the like-

lihood in Eq. 1 restrained to the target’s local appearance,

i.e. to the image region confined by shape model projection,

a reliable approximation to the marginals can be calculated

with a quadratic cost. This is done by updating each factor

p(xk
t |z1:t−1) of the separable temporal prior with a marginal-

ized log-likelihood

Lk(zt|wk
xk

t
) +

∑
l �=k

∫
Ll(zt|wl

xkl
t

)p(xl
t|z1:t−1) dxl

t (2)

where wj
y is zero everywhere but on pixels u that are internal

to the projected shape of xk
t , there taking values

[wj
y]u = 1 −

∏
i �=idx(y)

∫
[ωi

xi ]u p(xi|z1:t−1) dxi. (3)

Here wj
y, with y ∈ {xj

t ,x
jk
t } and idx(y) ∈ {j, jk}, is now a

smooth image kernel providing pixel weights to be accounted

for by L. The advantage is that marginalization is transferred

to image masks ωk
x, where it can be partitioned, thus com-

puted efficiently. By doing so, the more expensive evaluation

Fig. 1. Two examples which highlight the limitations of likeli-

hoods whose influence is confined to the target’s own support,

like [6]. In both cases exact localization is possible only with

the proposed extension. See text, and experiments in Sec. 4.1.

of Lj is done at most K times for each state (K is the number

of tracked bodies). We will refer to Eq. 2 as the HJS log-

likelihood of target k. A detailed mathematical derivation is

available in [6], which holds under locality.

3. HJS LOG-LIKELIHOOD FOR VISUALLY
INTERACTING TARGETS

To motivate our contribution we characterize imaging con-

ditions under which the standard HJS filter operates sub-

optimally, with excessive uncertainty. Two core examples

are depicted in Fig. 1. According to [6], dissimilarity terms

Ll in Eq. 2 are computed over the image area delimited by

shape projection. Consequently, the marginalized likelihoods

for x1
A and x1

B return the same (maximal) value, and this

holds for both figures. In the context of multibody tracking

this can lead to artifacts such as maintenance of phantom
modes in the posterior after an occlusion has occurred. A

tracker that discards non-local information (i.e. information

about where the target cannot be) is here prone to fail if the

noise in the appearance of the previously occluded target is

higher than the one of the occluder. To avoid this, we build

on the following observation: x1
A is the true state of target

1 in Fig. 1(a) because it uniquely explains the occlusion on
x2. Thus, L1 must be reformulated to get influenced by the

L2 value over x2, in a way that x1
B gets penalized by the

hypothesized unoccluded appearance of x2. To infer x1
B as

the unique plausible state for Fig. 1(b), that influence must be

extended even more, to the background. These modifications

introduce a strong, non-local, visual interaction.

To account for non-local information, we now design a

likelihood whose influence is no longer restricted to the tar-

get’s shape projection, but extends to a function of the entire

image. Given a state x, the image is tessellated into object

blobs and background through shape projections (Fig. 1). Oc-

clusions are handled by associating a pixel to the object that

is closer to the camera along the considered line-of-sight. The

remaining part is decomposed into a grid of Nx ×Ny regular

cells ω0
i,j . All patches are supposed to have mutually inde-

pendent appearance, so l(z|x) factorizes over them and Eq. 1
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is obtained. Since we now want to import this model as-it-is,

i.e. without restricting its range to the local support of the tar-

get considered, we can no longer apply the original algorithm.

Likelihood marginalization would have to be done explicitly,

thus relapsing the method back to exponential complexity.

An effective embedding is possible after revising Eq. 2.

The first term, Lk, remains unchanged because it is computed

using an image kernel which, by its definition, has local sup-

port. The terms under the integrals, Ll, now use a kernel that

expands beyond the image area delimited by the projected

shape of xk
t . The external part of it, say ml, still takes his

non-zero values according to Eq. 3. The complete kernel is

thus assembled pixel-wise, by [wl]u + [ml]u, or wl ⊕ ml

in compact notation. Under the assumption that the appear-

ance error spreads uniformly over the support of target l, i.e.

Ll(z|wl ⊕ ml) ≈ Ll(z|wl) + Ll(z|ml) we can partition the

computations: first the standard method is applied to compute

the local contribution (Eq. 2), which is then upgraded with the

term ∑
l �=k

∫
Ll(zt|ml

xkl
t

)p(xl
t|z1:t−1) dxl

t. (4)

The HJS likelihood now accounts for visual interactions

among all targets, being they occluding each other or not. To

seamlessly integrate a tessellated model of the background

(needed, e.g., to solve Fig 1(b)) we assign a fixed, determin-

istic posterior to each patch ω0
ij . Eq. 2 and Eq. 4 then ap-

ply as before, with the summation including the terms for

l = 0. While the introduction of a full-image likelihood now

enables for true Bayesian inference, in some applications reli-

able background information may not be available or difficult

to maintain. In such cases the extended filter can still be ap-

plied to systematically handle the ambiguities in Fig 1(a).

The standard algorithm (HJS particle filter, see [6]) is first

applied to compute HJS likelihoods on the local support. A

pair of image buffers per target are used to this purpose: each

Bl
ker contains one factor of Eq. 3, while from Bl

evd the sum

terms in Eq. 2 are extracted. After this first step an occlu-

sion kernel, Ok, is assembled for each target k from the set

{Bl
ker}l �=k following Eq. 3. Each particle is then revisited, and

the HJS likelihood is updated as follows. The background

term (l = 0) of Eq. 4 is computed using the occlusion kernel

with the shape projection area inhibited, i.e. with the values

internal to the projection set to zero. The remaining terms

of Eq. 4, which account for extended interactions with the

other targets, are integrated by summing up all Bl
evd values

that are external to the projected shape. To speed up, the de-

manding computation of the background term can be skipped

as follows: instead of scoring the background for each single

particle using its shape projection as kernel we can do it once

for all, by including Bl
ker in the calculation of the occlusion

kernel and updating Bl
evd correspondingly, before the second

pass. This way the binary mask is replaced with its expecta-

tion, thus occlusion boundaries are smoothed out, resulting in

a less peaked likelihood, which is the price to pay for speedup.

input image

local support proposed ext.

Fig. 2. Input image A (with target outlines and domain bound-

ary overlayed in gray), and HJS likelihood response for the

red target with local support only ([6], center) and proposed

extension (Sec. 3, without background term, right image).

The overhead introduced is linear in the overall represen-

tation size, which is number of targets K times number of

particles N used to represent each factor of the posterior. The

algorithm’s scalability is therefore left unchanged, which is

our key result: computational complexity remains O(K2N).

4. EXPERIMENTS

4.1. Likelihood response on synthetic data

To verify the claims made in Sec. 3 which led to the proposed

extension we compare original and proposed method on two

synthetic examples. Fig. 2 shows an image with a green figure

partially occluded by a red figure over a red background. To

the right there are the gray coded likelihood values computed

over a uniform grid placed on the floor for the red figure, using

the two methods. The position of the green figure is known.

With the locally defined likelihood it is not possible to local-

ize the target due to the cluttered background. Indeed, the

likelihood peek spans uniformly over a large portion of the

domain. The proposed extension, which accounts for addi-

tional evidence on the support of the green figure, suppresses

hypotheses that map onto the background because they do not

explain the partial occlusion on the green figure. This results

in a peaked response, from which the red figure can be local-

ized precisely. Fig. 3 shows the figures drawn with a regular

color pattern (each other pixel has lower intensity), simulating

a noisy observation. The red figure has more contrast in the

pattern, thus its color model is noisier than that of the green

figure. The occlusion robust formulation of the HJS likeli-

hood makes the original version priviledge occluded hypothe-

ses because of the less noisy color model of the occluder. A

particle filter using such likelihood would, after an occlusion,

maintain the higher scored particles in the occlusion volume

of the green target, generating a phantom mode in the esti-

mates, and potentially loosing its track after resampling. With

the extension that mode is again suppressed. This makes the

tracking significantly more robust in situations with unevenly

noisy target models, which are often captured in real world

applications during online operation.
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Fig. 4. Localization error distribution on test sequence, and key frames. See http://tev.fbk.eu/smartrack/icassp09.avi for a video.

input image

local support proposed ext.

Fig. 3. Likelihoods on image B (including background term).

4.2. Tracking on real data

To verify expected improvements we track five people through

a monocular sequence (50s) of scaled difficulty. In the first

20s the dynamics is high, with many partial and complete

occlusions occurring between up to three targets. After 25s

all five people arrange along a line-of-sight for about 5 secs

(> 70 frames). During this period only the person in front is

visible, with all the others almost completely occluded.

Appearance models are acquired manually, Bhattacharyya

coefficient is used for likelihood evaluation, and 150 particles

are assigned to each target. All tracks are initialized manu-

ally. Image resolution is 200 × 150. Processing the whole

sequence with the standard filter took 10.7 secs, and 42.9 secs

with the full extension, including background term. The first

method diverges in the initial phase of complete occlusion,

and cannot recover. The enhanced version of the same filter

keeps track of all targets across the whole sequence (Fig. 4).

To give quantitative results we report in Fig. 4 the amount

of posterior mass cummulated around the ground truth as a

function of distance from the ground truth position (i.e. the

localization error). The improvement achieved is significant,

and underlines the necessity of introducing non-local interac-

tions. To highlight efficiency, we compare it with a fully joint

implementation of the same tracker, which would correspond

to a straightforward extension of the work in [6]. 105 joint

particles were used, with each frame taking about 6.5 secs to

be processed. In spite of excessive processing load the fil-

ter failed soon because of sparse sampling of the joint space.

The presented contribution, together with the HJS framework,

allows to keep the workload manageable, while maintaining

robustness and accuracy at a comparable level.

5. CONCLUSION

In the context of multibody tracking we have (i) characterized

the limitations of a class of visual likelihoods that account for

the target’s local appearance only, and (ii) proposed a HJS fil-

ter build upon a revised likelihood that now captures a large

spectrum of visual interactions. Regardless of the ’curse of

dimensionality’ inherent in the problem, the resulting algo-

rithm still scales to input complexity, i.e. number of targets,

with quadratic upper bound. While improvements in terms of

robustness and accuracy were demonstrated on a challenging

sequence, we expect that this contribution will reveal its real

value in the context of articulated motion tracking.
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