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ABSTRACT

This paper deals with the reconstruction of smooth, flexible, isomet-
rically embedded flat surfaces in 3D, such as a sheet of paper or a flag
waving in the wind, from a set of 2D projected observations such as
camera images. To solve the problem, a set of matched features of
the waving object at different poses is needed, which are then ap-
plied to the reconstruction algorithm here described. The complete
algorithm consists of 2 phases, the first obtaining an initial approx-
imation from local features, the second uses this result to iterate a
global cost function, trying to achieve a better estimate. To validate
the algorithm, synthetic data with noise is generated, reconstructed
and compared to ground truth data. Also, a second experiment con-
sisting of real images of a sheet of paper is shown.

Index Terms— Machine vision, Isometric Non-Rigid Recon-
struction, Manifold Learning

1. INTRODUCTION
This paper provides a solution to the problem of reconstructing iso-
metrically embedded flat surfaces in 3D from a set of partially cali-
brated images where only intrinsic parameters are known. The pro-
posed algorithm is inspired from manifold learning techniques and
can be used in this setting as well.

The motivating application here is to infer the structure of a non-
rigid isometric surface observed in multiple images. The example
provided is to reconstruct a waving sheet of textured paper (or a flag)
observed in multiple images.

Prior work in a similar area, inferring the 3D embedding from an
observed image assuming the surface model to be known, includes
[1] which provide a closed form solution to the problem of regis-
tering a camera observation to an a-priori known model embedded
in 3D. Also in [2] the authors propose to learn the statistical defor-
mation model of deformable surfaces and use the gained knowledge
to recover 3D structure from a single camera, usable even in low
texture settings. Other work include [3] which propose to estimate
smooth image wraps (not necessarily isometric) by minimizing com-
pound energy while inferring a smoothing parameter as well. To our
knowledge, this is the first work that attempts to learn the underlying
surface from multiple camera observations.

In a seemingly unrelated branch of non linear dimensionality re-
duction, manifold learning attempts to infer low dimensional struc-
ture from very high dimensionality data (see for example [4] for a
survey). Here the problem has a different description, where an em-
bedded object is assumed to be completely known a-priori, but rep-
resented in such high dimensionality as to be awkward to use. Hence
the need to describe the same object (with little loss of information)
in a lower dimensional space sometimes with some added character-
istics such as linearity. Here the concepts of isometry and smooth
embedding [5] are often used to justify the methods.

The paper is structured as to first provide a mathematical de-
scription of the problem in section 2, then describes a fast method
to obtain an initial suboptimal solution in section 3. The global op-
timization is described in section 4. Finally, results are provided in
section 5 and conclusions are drawn.

2. MATHEMATICAL FORMULATION
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Fig. 1. Here Ii : R
2 ⇒ R

3 are nonlinear embedding isometries
and Ci : R

3 ⇒ R
2 are camera projections. Image tangent vectors

are represented by vk
ij , whilewij is the corresponding reconstructed

tangent vector.

Mathematically the 2-D flat manifold (R2) is approximated by
a cloud of point features Q =

˘
qi ∈ R

2
¯
. A set of K embedding

isometric functions (here loosely defined as functions that do not
change the intrinsic distance between points, see [5] for a more rig-
orous definition) Ik : R

2 → R
3 yield 3-D point clouds Ik(Q) =˘

Ik(qi) : qi ∈ Q
¯
. These 3-D point clouds are assumed to be ob-

served by cameras, yielding the observations Pk = Ck ◦ Ik(Q),
where Ck is the camera projection function (see figure 1.a). Note
that camera motion is an isometry hence can be absorbed by Ik al-
lowing Ck to be seen as the projection to a canonic camera at the
origin.

From these observations, the shape estimation problem is for-
mulated: estimate the 2D point cloud Q from multiple observations
Pk. It can be formulated using orthographic cameras, scaled ortho-
graphic cameras or other cameras, but it is assumed that the point
correspondence between each Pk is known. This is considered to
be a different problem and is not dealt with here. Also, this paper
assumes all points are visible in all images.

Assuming the point cloud is dense enough so that a locally pla-
nar approximation is possible, the extrinsic distance and angles be-
tween neighboring points is approximately preserved by the isome-
tries Ik. Note that this is always true for the intrinsic distance, but
for the extrinsic distance it is only true if the considered points are
contained in a planar submanifold. This is the approximation that
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will be exploited to allow reconstruction of the objects. Since gen-
eral isometry functions are hard to characterize, the known prop-
erties of their push-forwards (in a loose sense, their “derivatives”)
will be exploited instead. The key observation is that when Ik is an
isometry then the corresponding push forward at a point qi (here de-
noted as Ik

qi∗
) is represented as a Stiefel matrix (i.e. two columns

of a 3 × 3 orthogonal matrix) in any orthonormal base. Hence, 2D
tangent vectors of R

2 at the same point are sent to 3D vectors by
matrix multiplication by this Stiefel matrix. The push forward of the
observation function is here represented byCk. By composition, the
transformation of tangent vectors at a point qi to tangent vectors in
the observed image is given by a 2 × 2 matrix Sk

i = Ck ◦ Ik
qi∗

.
When the cameras are orthographic Ck =

ˆ
I2×2 0

˜
these

Sk
i matrices are 2 × 2 submatrices of larger orthogonal 3 × 3 ma-

trices (i.e. a Stiefel matrix without the bottom row). Henceforth
these particular matrices will be designated as Sub-Stiefel. Using the
Cauchy Interlacing Theorem [6], these matrices can be characterized
as the set of 2 × 2 matrices with the largest singular value equal to

1: SS =
n
S2×2 :

»
S ∗

∗ ∗

–
∈ SO(3)

o
= {S2×2 : σmax(S) = 1}.

These matrices will play an important role in the next sections.
The objective will be to solve the following optimization prob-

lem, where the notation [j] means the jth neighboring index point
of i (there should not be any confusion from dropping the i in the
notation):

min
P

i,j,k

‚‚(
v

k
i[j]z }| {

p
k
[j] − p

k
i )−sk

i O
k
i

wi[j]z }| {
(q[j] − qi)

‚‚2

s.t. O
k
i ∈ SS, qi ∈ R

2, {sk
i } ∈ camera model set

(1)

which roughly states that at each ith point in the kth image, there
must exist a Sub-Stiefel matrix describing its neighbors [j]. Please
see figure 1.b for a visual description of the variables. Here, for
orthographic cameras the third constraint should be sk

i = 1 (as de-
scribed above), for scaled orthography it should read sk

i = sk
j ∀k ∈

{1...K} and for a less constrained camera (even more than a para-
perspective camera) these parameters are free sk

i ∈ R.
Considering the objective function and set of constraints the

problem is not trivial to solve even in the simplest orthographic cam-
era case. The approach taken is to first obtain a “good enough” (later
defined) approximation and then use an iterative optimization algo-
rithm to improve the solution.

3. SUB-OPTIMAL SOLUTION TO ISOMETRIC
RECONSTRUCTION OF FLEXIBLE MANIFOLDS

This section provides a way to compute an initial approximation for
the problem in equation (1). The full problem is broken in several
much simpler subproblems, chained together to obtain the final re-
sult. This paper describes an approach that is applicable to several
types of cameras, and degrades gracefully in the presence of noise.

To describe how an approximate solution is obtained the prob-
lem is broken into 4 chained sub-problems, described individually in
the next sub sections: 1. Discover local neighbors from the observed
images, that is, for each i, build the index set {[j]}; 2. Use bilinear
factorization to freeze some degrees of freedom in problem (1); 3.
Impose the shape consistency constraint wij ≈ qi − qi where the
approximation is properly defined in the next sections; 4. Impose
the model consistency constraint Ok

i ∈ SS by freezing the remain-
ing degrees of freedom not previously used.

3.1 Neighbor Estimation. The formulation presented hints at the
need to find local neighbors. This problem is not trivial since the
actual distances between points is not known, only the distance be-
tween camera projected points. The problem is that if the surface

appears folded in an image, some intrinsically far points might seem
close together. The converse holds more information though: as long
as there is a single image observing a pair of points as not being near
each other they’ll be excluded as neighbors. So a simple algorithm
for neighbor estimation might be summarized as: a pair of points
are considered neighbors as long as they’re observed in all images
within a certain ball, which can vary from image to image, and from
point to point. These balls can be chosen to make sure a certain
minimum number of neighbors exist for each point.

Please note that the output of this algorithm does not guarantee
that all returned points are actual neighbors, but it seems to provide
good results, especially as the number of images increases, minimiz-
ing the chance of a “collapsed” area of the surface in every image.
In this paper, the results were obtained by imposing that each point
have 8 neighbors.

3.2 Bilinear Factorization. As shown in [7], bilinear factorization
is a powerfull tool used to solve many engineering problems. To
apply the factorization method, the constraints will be temporarily
relaxed, which also allows the sk

i to be fused with the Ok
i matrices,

yielding the much simpler problem:

min
P

i,j,k

‚‚(pk
[j] − pk

i ) − Ôk
i wi[j]

‚‚2

s.t. Ô
k
i ∈ GL(2), wi[j] ∈ R

2 (2)

When all neighbors of all points are seen in every images, grouping
variables pointwise in observation, model and shape matrices

Vi =

2
64
v1

i[1] . . . v1
i[ni]

...
. . .

...
vK

i[1] . . . vK
i[ni]

3
75 Ôi =

2
64

Ô1
i

...
ÔK

i

3
75 Wi =

ˆ
wi[1] . . . wi[ni]

˜

where vk
i[j] = pk

[j] − pk
i as in problem (1) and ni is the number of

neighbors of point i, allows the problem to be rewritten, decoupled
at each point:X

i

„
min

‚‚Vi − ÔiWi

‚‚2

s.t. Ôi ∈ R
2K×2, Wi ∈ R

2×ni

«
(3)

Here rank factorization techniques apply directly, yielding a pair of
Ô∗

i andW∗

i matrices for each point. Since the solution is not unique
(for any matrices Gi ∈ GL(2), Ô∗

i G
−1
i and GiW

∗

i are also solu-
tions), there are some degrees of freedom that still need to be fixed.
These will be used to approximate the discarded constraints.

3.3 Shape Consistency. This section will use the degrees of free-
dom left in matrices Gi to approximate, in a later defined sense, the
constraintswi[j] = q[j]−qi that were relaxed between problem for-
mulations 1 and 2. Up to now, the solution is not anchored in space,
consisting only of sets of “free” vectors. Furthermore, these vectors
are not consistent with each other, in the sense that wij �= −wji

whenever both vectors exist and that wik �= wij + wjk whenever
these 3 vectors exist (i.e. whenever the corresponding points are
neighbors).

Defining the surface neighbor vector matrices as
Qi =

ˆ
q[1] − qi, q[2] − qi, ..., q[ni] − qi

˜
(notice the neighbor [·] notation). Imposing shape consistency means
finding matrices Gi and points qi such that GiW

∗

i − Qi ≈ 0.
The left side is clearly linear on a larger matrix containing all points
Q = [q1 q2 ... qN ] and matrices Gi, hinting at the possibility of
existing matrices Ai and X = [Q, G1, G2 . . . GN ] such that the
previous equation can be written as XAi ≈ 0. These matrixes in
fact exist.

There’s an additional property that needs to be understood. It
stems from the fact that if a matrix X is given that satisfies XAi =
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0, then any pre-multiplication of this by another matrix G is also
a solution: GXAi = 0. This means that the problem is ill de-
termined, and that the best that can be done is provide a solution
up to a global linear transformation. There is also a trivial solution
which consists of making the lines of Q constant (i.e. all points
the same) and Gi = 0, implying that matrices Ai have a kernel
with eigenvector [11×N , 01×2N ]T . This trivial solution must be ex-
cluded by allowing only solutions on the orthogonal complement of
this constraint. With this in mind, an optimization problem can be
formulated as

min
P

i ‖XAi‖
2
GL(2)

s.t. X ∈ R
2×3N , X[11×N 01×2N ]T = 0

(4)

Here the norm subscript is used to hint that this must be a GL(2)
left-invariant function. This problem reduces to a sparse eigenvalue
problem of a sparse symmetric matrix when a standard left invari-
ant function with a simple solution that serves the purpose is used:

‖XAi‖
2
GL(2) = tr

n
AT

i XT
`
XXT

´
−1

XAi

o
. Using the property

of the trace function tr(AB) = tr(AB), the change of variables

Y =
`
XXT

´
−1/2

X, and the fact that the function is GL(2) left
invariant, the problem results in a sparse eigenvalue problem:

min tr
˘
YAYT

¯
s.t. YY

T = I,Y ∈ R
2×3N ,Y[11×N 01×2N ]T = 0

(5)

This is exactly the formulation problem of the second and third
eigenvalue of a symmetric matrix A =

P
i AiA

T
i with a least

eigenvector known to be [11×N 01×2N ]T (as is the case). This can
be obtained efficiently with available software taking into account
the sparsity of matrix A (see for example [8]).

Since Y is obtained from X by left multiplication by a matrix,
and since the cost function is left invariant, X∗ = Y∗ is a solution
to the original problem. MatrixX∗ contains all matricesQ∗ andG∗

i

as desired. Matrix Q∗ contains an initial embedding of the points,
up to a GL(2) transformation that will be computed next. From here
on it is assumed that the computed G∗

i have been merged into Ô∗

i

and W∗

i .

3.4 Camera Model Consistency. Bear in mind that there is still
a global G ∈ GL(2) ambiguity which, along with the merged sk

i

constants in Ô∗

i will be used to “straighten the axes” by imposing
the still ignored camera acquisition model. The idea is to search for
a G ∈ GL(2) matrix that forces the matrices Ô∗

i G/sk
i to minimize

some sort of distance d(·) to the Sub-Stiefel matrix set. Due to the
characterization given previously, we know that this d(·) should de-
pend on the maximum singular value of its argument, but other than
this (and the fact that it should be a distance function) there is no
naturally given choice of function, the best that can be done to nar-
row the choice is impose desired properties for the solution. The
following optimization problem is proposed, to force a set of given
matrices Si to be as close as possible to the Sub-Stiefel set by right
multiplication by a common G (there are strong group theoretic and
statistical arguments to use this function):

min
P

i log2 (σmax (Si G))
s.t. G ∈ GL(2)

(6)

where σmax(·) returns the largest singular value.
This problem can be reduced to an optimization problem in the

real projective plane RP
2, which makes it significantly easier to

solve, since it is a compact two dimensional differentiable manifold,
definitely within the reach of branch and bound algorithms if noth-
ing better is possible. Maybe equally important is that the function

can now be visualized, allowing intuition and a clearer idea of how
hard it is to solve. Unfortunately sometimes it shows 2 different local
minima. Despite this shortcoming, when used to solve the problem
at hand it does produce seemingly good results without much con-
cern over which local minimum is used (usually the minima are very
close together, indistinguishable when the function is seen globally).

Since σmax is a smooth function of its matrix argument almost
everywhere (it is non-smooth when both singular values are equal),
gradient vector and Hessian are computable for every function in-
volved. It is relatively straightforward to implement a Newton-like
method on the projective space (see for example [9]) with only minor
care to avoid the non-smoothness. Note that the minimizer should
only be at the non-smoothness with probability 0 (unless artificial
examples are used).

Since the maximum eigenvalue function is invariant to rotations,
this cost function provides a solution up to a global rotation. This is
to be expected since no global referential has been imposed.

Looking back, up to this section a set of matrices Ôi∗

k (already
multiplied by G∗

i
−1 computed in the previous section) have been

computed. These matrices are known up to a globalGmatrix. When
equation (2) was written, the variables sk

i were fused with the Ok
i

matrices: Ok
i = Ôk

i /sk
i . These are the matrices that need to be as

close to Sub-Stiefel as possible:

min
P

(i,k) d2
SS

“
Ôk∗

i G/sk
i

”
s.t. G ∈ GL(2), {sk

i } ∈ camera model set

When simple orthographic cameras are used (sk
i = 1) the problem

assumes the exact form as problem 6. Interestingly, the same trick
used to describe the problem as an optimization problem in projec-
tive space can be re-used to allow use of more complicated camera
models. When scaled orthographic cameras are used, sk

i = sk
j hence

there’s a unique scale factor sk for each image:

min
P

k

 
min

P
i d2

SS

“
Ok

i
∗

G/sk
”

s.t. sk ∈ R

!
s.t. G ∈ GL(2)

The only change is that there’s an additional scale ambiguity in the
final reconstruction (adding to the global rotation matrix). This is
expected when using scaled orthography.

If the camera model is the least constrained possible sk
i ∈ R,

the problem is trivial, with solution sk
i = σmax(Ôk∗

i ). Since G is
not used, this is the global ambiguity. Hence the solution obtained
in the previous section is the best that can be hoped for.

4. GLOBAL OPTIMIZATION
From the beginning the objective has been to obtain a solution for
problem 1. While the previous section has provided an initial ap-
proximation to this problem, it does so through a series of simplifi-
cations. This section now proposes to take the previous solution and
actually achieve a (possible local) minimizer for the problem. Since
the problem is not smooth (SS is not a smooth manifold), it is hard
to implement even a gradient descent method. Here we propose to
take a much simpler approach based on coordinate cycling, solving
a conceptually important sub-problem in the process.

Taking into account that the previous section obtained approxi-
mate solutions Ok∗

i , qi and sk
i , the proposal is to iteratively obtain

a better estimate for one set of these variables, while keeping the re-
maining ones fixed. Since of these 3 sets the Ok∗

i are the only ones
that do not obey the constraints (the previous section only approxi-
mated them), this is the set of variables that shall be used to start the
iterative process.

751



4.1 Solving for Ok
i . Grouping the problems variables in index j,

similarly to what was done in problem 3, and fixing all variables
except Ok

i , the subproblem to be solved is

min
P

i,k

‚‚Vk
i − Ok

i Ŵ
k
i

‚‚2

s.t. O
k
i ∈ SS

(7)

where here Ŵk
i = sk

i Wi absorves sk
i and Wi is recomputed from

the current qi. Notice that the terms are not related, hence this can
be broken into many subproblems, each involving a single Ok

i ma-
trix. This problem will be known as the 2× 2 Sub-Stiefel Procrustes
problem. Although not presented here, its solution can be reduced
to finding the real roots of a 6 degree polynomial, obtained through
a “once for all time” (data independent) computation of a Gröbner
basis from Algebraic Geometry.

4.2 Solving for qi and sk
i . The cost function is linear in each of

these variables hence they can be iterated using simple least square
regression techniques.

5. RESULTS
Two experiment sets are shown, one with synthetic noisy data, the
other with hand clicked real images. In both cases the 8 closest
neighbors were used. In the synthetic image case (see figures 2
and 3) a set of 18 images were generated similar to the ones shown,
with a significant amount of gaussian noise added (standard devia-
tion about half the intergrid distance). These images were then fed to
the algorithm in 2 runs, one where only 6 images were used, the other
using all 18 images. The results were then rotated and multiplied by
a scalar (global ambiguity of using scaled orthographic cameras) to
best fit the ground truth data. Notice that the final reconstructions
are close to the ground truth image, without any noticeable shearing.
As expected, the number of images helps reduce the amount of noise
in the reconstruction.

(a) half cylinder (b) sine wave (c) swiss roll

Fig. 2. Input data wrapped around different shapes. The set contains
18 images similar to the ones shown.

(a) 6 Images. (a) 18 Images.

Fig. 3. Result of the algorithm (red crosses) after applying 5 global
iterations. Ground truth (without noise) is provided in blue circles
for comparison.

In the real image case, 7 images were obtained, using a laptop
webcam, at different distances from a waving sheet of paper with
an easily identifiable printed pattern. The images were then hand
clicked and the points were fed to the algorithm. The results obtained
are shown in figure 4. Note that globally the reconstruction appears
to have a slight pinch in the middle probably due to some bias in the

distortions applied to the sheet of paper; with hand made distortions
the central part is usually the most curved.

(a) Acquired image. (a) Results obtained.

Fig. 4. Results of applying the algorithm to 7 camera acquired im-
ages.

6. CONCLUSION
An algorithm for reconstructing flat surfaces from images of 3D iso-
metric embeddings of flat surfaces is described. The algorithm con-
sists of two separate phases, first obtaining an approximate solution
and then improving it with a global algorithm. Validation was pro-
vided, demonstrating that the algorithm produces the expected re-
sults.

In the future we hope to improve the global algorithm, by inte-
grating second order information using neighboring Sub-Stiefel ma-
trices. This would help correct the pinching effect seen in some re-
sults, at a higher computational cost. Making the algorithm work
with only partially visible data is also a priority.

Due to space requirements, some ideas were left without proof,
to be included in a followup paper in preparation.
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