
FAST BELIEF PROPAGATION PROCESS ELEMENT
FOR HIGH-QUALITY STEREO ESTIMATION

Chao-Chung Cheng1, Chia-Kai Liang2, Yen-Chieh Lai3, Homer H. Chen2, and Liang-Gee Chen1

Graduate Institute of Electronics Engineering1,

Graduate Institute of Communication Engineering2,
Department of Electrical Engineering3,

National Taiwan University

ABSTRACT

Belief propaga ion is a popular global optimization tech-
nique for many computer vision problems. However, it re-
quires extensive computation due to the iterative message
passing operations. In this paper, we present a new process
element (PE) for efficient message construction. The effi-
ciency is gained by exploiting the unique characteristics of
the generalized Potts model (truncated linear mode) of the
smoothness term in the Markov random field. For stereo
estimation with L disparity values, the algorithm successful-
ly reduces the computation from O(L2) to O(L) and retains
the high throughput and low latency. Compared with the
direct message construction PE, our method achieves
87.14% computation saving and a 94.38% PE area reduction.

Index Terms— Belief propagation, hardware imple-
mentation, stereo estimation.

1. INTRODUCTION

Many problems in computer visions and image processing
attempt to assign an optimal label to each node (pixel, block,
or other element) in the image. A label stands for a local
quantity, which can be a disparity vector or a motion vector.

The optimal label assignment can be formulated as a
problem of energy (cost) minimization on a Markov Ran-
dom Field (MRF). Typically, the energy has two terms: a
unary data term Ed that penalizes the inconsistence with the
observed data, and a pairwise smoothness term Es that fa-
vors the spatial coherence of the labels. The optimal labels
{lp} should minimize the combination of these two terms:

,
argmin , ,

p

p d p s p q
l L L L L p P p q G

l E l E l l (1)

where L is the set of possible labels, P is the set of all nodes
and G is the specified neighborhood, such as the 4-nearest
neighbors.

Recently, efficient algorithms, such as graph cuts [1],
(loopy) belief propagation [2], and numerous variants [3],
for solving Eq. (1) have received increasing attention. They

can find a strong locally optimal solution in polynomial time
and thus enable many applications such as disparity estima-
tion [6], image denoising, inpainting, image stitching, bi-
layer segmentation, etc [3].

While the software implementation of these algorithms
works well, the hardware implementation has not been fully
addressed in the past. The hardware implementation requires
different considerations: bandwidth, internal and external
memory size, degree of parallelism and regularity of memo-
ry access, etc.

In our initial study, we found that belief propagation
among others has the highest potential for hardware imple-
mentation [5]. It is highly parallel and only uses simple op-
erations. We have reduced the bandwidth and memory
overhead for hardware implementation in [4]. However, the
straightforward hardware implementation is still prohibitive
due to the amount of computation for message construction.

In this paper, we focus on the computational issue and
propose a new processing element (PE) for the message
construction, particularly for stereo estimation applications.
The algorithm behind the PE exploits the unique property of
the smoothness terms commonly used in stereo estimation.
Compared with the PE that performs the traditional message
construction, our PE requires only a fraction of the computa-
tion and area.

The rest of the paper is organized as follows. In Section
2, we review the original belief propagation technique and
analyze its message computation. In Section 3, we present
the proposed hardware-oriented fast message computation

+

MRF Graph

message

message

message message
Data Cost

Smoothness Prior
Between node p and q

T

lp - lq

Node p

Node q

Node r

Node s

Node u

s

r

p q

u

t
pqM

1t
rpM

1t
spM 1t

upM

Fig. 1. Message computation of belief propagation

745978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009

algorithm and the coresponding PE design in detail. In Sec-
tion 4, the comparison between the proposed algorithm and
previous ones from the hardware perspective is given. Final-
ly, we conclude this paper in Section 5.

2. BELIEF PROPAGATION

Belief propagation (BP) iteratively performs message pass-
ing operations. At iteration t, each node p sends a -
dimensional message to its neighbor q. Each entity

(l) in the message can be expressed as follows:

1

\
min , ,

p

t t
pq q s q d p pl L p q

M l E l l E l M l
N

 (2)

where L is the set of all labels, is the number of labels,
and Np is the set of the neighbors of p, as shown in Fig. 1.

(lq) encodes the opinion of p about assigning label lq to
q. Node p first scans all labels l' and decides the one that
gives the greatest support for assigning l to q based on 1) the
smoothness (compatibility) cost Es(lq,l') between l' and lq, 2)
the self-judgment cost Ed(l') of p about being assigned l',
and 3) the opinion (l') from neighbors expect q (Np\q)
about assigning l'.

All nodes exchange messages (opinions) about the la-
bel assignment and, through iterations, nodes far away from
p can influence p’s label assignment. According to [3], we
define a single iteration as that of propagating a message
from the top-left node to the bottom-right one, and then
propagating in the opposite direction. After an enough num-
ber of iterations, say K, the label of p is determined based on
the local likelihood and the messages from the neighbors as
shown in Fig. 2(b):

argmin .
p

K
p d p pl L p

l E l M l
N

 (3)

The labels thus obtained correspond to a strong local mini-
mum of the energy function (1). BP has several advantages
for hardware implementation. Firstly, it is highly parallel
because each node can operate independently in message
passing. Secondly, it only uses simple operations such as
additions and comparisons. Third, the memory access is

regular. If we update the message sequentially, the required
input data can be streamed into the processor with ease.

However, there is an issue related to the extensive
computation required by BP. In each iteration, a image of N
pixels with 4-connected neighborhood takes 4N message
computations. According to Eq. (2), a message needs L(3+L)
additions and L(L–1) comparisons. The constant factor 3 is
included to account for the reuse of some partial summation
results, as described in [7]. The computational complexity is
proportional to O(NL2). In stereo estimation of a VGA-sized
image pair with 60 disparity values, a single BPM iteration
requires 4.64G additions and 4.35G comparisons.

Therefore, fast message computation strategies must be
applied. In [7], a two-pass algorithm with O(NL) complexity
is proposed. This method only needs (3+2)L additions and
2(L−1) comparisons to construct a message. However, it
induces sequential dependency, which makes the parallel
processing impossible. In hardware implementation, the
cycle count and the latency linearly increase with L.

In order to allow for large discontinuities in the labe-
ling, the cost function stops growing after the difference
becomes large. A popular smoothness term in stereo algo-
rithms is the generalized Potts model. It is a truncated linear
function with the cost linearly increases with the distance
between the labels p and q up to some level:

, = min(| |,),s ql L
E l l l l T (4)

where λ is the weight of the smoothness cost, and T controls
when the cost should stop increasing (Fig. 3).

3. FAST MESSAGE COMPUTATION ALGORITHM

We attack the computational issue at the algorithm level by
proposing an efficient message computation method. The
proposed hardware-oriented algorithm produces the results
identical to the original method. We will then present the
corresponding parallel PE design for the algorithm.

The pseudo codes of different message construction
methods are listed in Table I, II, and III. All functions load
three incoming messages Mu, Mr, Ms, the local data term D,
and the smoothness term V (tabularized Es(l, l')), and gene-
rates the outgoing message Mq. The loops that can be per-
formed in parallel are indicated. Let DA and DC denote the
latency of the adder and comparer respectively. The total

0 1 2 3 4 5
Fig. 3. An illustration of the truncated linear envelope of 6 cones in
the case of one-dimensional labels. The red line is the final mes-
sage. λ=2 and T=10.

s

r

p q

u

t
pqM

1t
rpM

1t
spM

1t
upM

s

r

p q

u

T
pqM

T
rpM

T
spM

T
upM

(a) (b)
Fig. 2. (a) A message at iteration t from p to q is constructed using
the messages from r, s, and u to p at iteration t 1. (b) The node p
collects all messages from the neighbors to decide the best label.

746

latency for each stage in the pseudo code is shown at right.
Note that in the pseudo codes, we include all possible par-
allelism to not only our algorithm, but also the original BP
and the efficient BP algorithm in [7].

In original BP, the messages can be calculated by gene-
rating all L2 hypotheses first, and then finding the L minimal
final entities from them in parallel. The latency of this oper-
ation is log2(L)DC. However, it requires L2 temporal regis-
ters and operators. If we give up the parallelism, it takes O
(L2) cycles.

The software-efficient algorithm in [7] is shown in Ta-
ble II. The entities are updated sequentially in two forward-
backward passes and then truncated by the threshold. The
sequential operation is suitable for software but causes a
huge latency and low throughput in hardware. In hardware
implementation, it is actually much slower than the paralle-
lized original BP.

3.1. Proposed Algorithm

We find that in the stereo estimation, the truncated linear
function is commonly applied for the smoothness term. This
function increases as the distance between the labels l and l'
increases up to a certain level, and then becomes fixed to a
threshold value T, which is typically 1 or 2.

Because all truncated values are constant, the L-to-1
comparisons for the i-th entity can be reduced to (2T−1)-to-
1 comparisons from i−T+1 to i+T−1 neighboring labels, plus
one comparison with the global minimum threshold, as
shown in Table III. All redundant additions and compari-
sons can be removed. Take Fig. 3 as the example, all non-
global minimum thresholds (green lines) are larger than the
global minimum one (blue line) and can be skipped in the
comparison process.

Furthermore, the local minimum cost comparison and
the global minimum threshold finding can be done in paral-
lel. All the above results in an efficient hardware design
with reduced data access and fan-out. This method can also
be generalized to handle many robust functions commonly
used as the smoothness term, as described in [4].

3.2. Processing Element Design

The data flow and the processing element designs are
present in Fig. 4 and Fig. 5, respectively. In the proposed
method, only neighboring 2T−1 hypotheses are generated
and compared. In typical cases, T=2, and thus only three
hypotheses are compared. Then the minimum hypothesis is
then truncated by the global minimum threshold, which is
generated once and served for all entities. The global mini-

Table I. Message computation flow in original BP
BuildMessageOriginalParallel(Mq, Mr, Ms, Mu, D, V) Latency
for l = 0,…, L−1 in parallel

H[l] = (Mu[l]+Mr[l])+(Ms[l]+D[l]);
End

2DA

for l = 0,…, L−1 in parallel
for m = 0,…, L−1 in parallel 1 ADD

M_part[l][m] = H[m]+ λV[m][l];
end

end
for l = 0,..., L−1 in parallel

for m = 0,…,L−1 in parallel log2(L) CMP
Mq[l] = min(M_part[l][m], Mq[l])

end
end

DA +
log2(L)DC

Table III. Proposed fast, hardware-oriented
message computation algorithm

BuildMessageProposed(Mq, Mr, Ms, Mu, D, V) Latency
for l = 0,…, L−1 in parallel

H[l] = (Mu[l]+Mr[l]) + (Ms[l]+D[l]);
end

2DA

//The local minimum cost comparison phase
for l = 0,…, L−1 in parallel 1 ADD

for m = −T+1, , T−1 in parallel
M_part[l][l + m] = H[l + m]+ λV[l + m][l];

end //for l
for l = 0,…, L−1 in parallel

for m = −T+1, , T−1 in parallel log2(2T−1) CMP
M[l] = min(M_part[l][l + m], M[l]);

end
end

DA+
log2(2T-1)DC

//The global minimum threshold phase
for l = 0,…, L−1 in parallel log2(L) CMP

M_min = min(H[l]+λT, M_min);
end

log2(L)DC+DA

//Global truncation phase
for l = 0,…, L−1 in parallel 1 ADD and CMP

Mq[l] = min(M[l], M_min);
end

DA+ DC

Table II. Fast message computation in [7]
BuildMessageEfficient(Mq, Mr, Ms, Mu, D, V) Latency
for l = 0,…, L−1 in parallel

H[l] = (Mu[l]+Mr[l])+(Ms[l]+D[l]);
end

2DA

for l = 1,…, L−1 L-1 ADD and L−1 CMP
H[l] = min(H[l-1]+λ, H[l]);

end
for l = L−2,…, 0 L−1 ADD and L−1 CMP

H[l] = min(H[l+1]+λ, H[l]);
end

2(L-1)×
(DA+DC)

//Minimum truncation phase
M_min=M[0];
for l = 1,…, L−1 in parallel log2(L) CMP

M_min = min(H[l], M_min);
end
for l = 0,…, L−1 in parallel 1 ADD and 1 CMP

Mq[l] = min(H[l], M_min + λT);
end

log2(L)DC

+ DA+Dc

747

mum threshold finding and local minimum cost comparison
can be performed in parallel.

4. COMPARISON AND DISCUSSION

The complexity-latency-throughput comparisons of three
methods are listed on Table IV. Compared with the original
message computation, the proposed algorithm has a much
lower complexity but still preserves the high throughput and
the low latency. Only an additional Dc latency is included.
On the contrary, the efficient BP method [7] has the same
complexity, but has a much larger latency and low through-
put. If we measure the operation count, the proposed algo-
rithm and the efficient BP method have similar performance.
Note that the proposed acceleration is a low-level technique
is independent of the high-level applications.

We synthesize the circuits by using the UMC90nm li-
brary with the critical path constraint 10ns. Compared with
the original message computation method, the proposed
method reduces 94.4% gate counts, as shown in Table V.
Moreover, the proposed algorithm has much less fan-outs
than the original method does, and hence the latency of the
critical path is greatly reduced.

Finally, we apply our algorithm to two different mas-
sage passing schemes, the BPM [3] and the tile-based BP
proposed in [5]. The software execution time is shown in
Table VI. We can see that the execution time is accelerated
by a factor of 5.53 in BPM and 3.93 in tile-based BP. This
means our algorithm is also beneficial for the software im-
plementation.

5. CONCLUSION

Belief propagation is a popular global energy minimization
technique. It can obtain a much better solution than the local
optimization algorithm, but is also more computational in-
tensive. In this paper, we have proposed a fast message
computation algorithm for BP. By only generating and
comparing a small number of hypotheses and the global
minimum threshold, the proposed algorithm can greatly
reduce the computational complexity. The low latency also
enables the high throughput in parallel processing. We hope
this new design can make the belief propagation a more
practical algorithm for real-time applications.

6. REFERENCES

[1] Y. Boykov, O. Veksler, and R. Zabih, “Fast Approximate

Energy Minimization via Graph Cuts,” in IEEE Trans PAMI,
vol. 23, no. 11, pp. 1222-1239, 2001.

[2] W. Freeman, E. C. Pasztor, and O. T. Carmichael, “Learning
the Low Level Vision,” IJCV, vol. 70, no. 1, pp. 41-54, 2000.

[3] R. Szeliski, et al., “A Comparative Study of Energy Minimi-
zation Methods for Markov Random Fields with Smoothness-
Based Priors,” IEEE Trans PAMI, vol. 30, no. 6, pp. 1068-
1080, 2008.

[4] C.-C. Liang, C.-C. Cheng, C.-K. Liang, Y.-C. Lai, L.-G. Chen,
and H. H. Chen, “Hardware-Efficient Belief Propagation,”
submitted.

[5] C.-C. Cheng, C.-K. Liang, Y.-C. Lai, H. H. Chen, L.-G. Chen,
“Analysis of Belief Propagation for Hardware Realization,” in
Proc. SiPS, 2008.

[6] J. Sun, N. N. Zheng, and H. Y. Shum, "Stereo Matching Us-
ing Belief Propagation," IEEE Trans. PAMI, vol. 25, no. 7, pp.
787-800, July 2003.

[7] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient Belief
Propagation for Early Vision,” IJCV, vol. 70, no. 1, pp. 41-54,
2006.

Hi

M
t-1 u(i) Dp(i)M

t-1 t(i)
M

t-1 q(i)

Hi Hi+1Hi-1

(a) (b)

Fig. 4. The data paths for (a) the generation of H[i] and (b) the generation
of hypotheses.

MinMin

Min

Min

Min

Min

Min

+T

H0
H1

H2

HL-1

Min
Threshold

Min

Min

Mt
pq(i)

H iH i-1
+λ

H i+1+
λ

H iH i-1
+λ

V i-1
,i

H i+1+
λV

i+1,i

H i-2
+λ

V i-2
, i

Mt
pq(i)

(a) (b)

Min

Fig. 5. (a) The PE and data flow of the traditional message construction.
(b) The proposed PE and data flow. The grey items have the same struc-
ture but different inputs and work in parallel.

Table IV. Overall comparison of different methods
 Original

[3]
Efficient BP

[7] Proposed

Complexity OO(L2) OO(L) OO(L)
Latency un-
der max par-

allelism

3DA+
log2(L)DC

3DA+
2(L-1)*(DA+DC) +

2log2(L)DC +DC

3DA+
log2(L)DC+

 DC
Throughput L 1 L
Operations

for L=64, T=2 4480 576 572

Table V. Comparison of gate count
L=64

UMC90nm@10ns
Original

[3] Proposed
Reduction

ratio
Gate count 533.8k 30k 94.38%

Table VI. Comparison of the software execution time
CPU: Core2Duo E8400

Image Size: 450x375 ,L=64 BPM [3] Tile-based BP
[4]

Original algorithm 20.984s 14.688s
Proposed algorithm 3.797s 3.733s
Speedup ratio (original/fast) 5.53 3.93

748

