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ABSTRACT 
 
Belief propaga ion is a popular global optimization tech-
nique for many computer vision problems. However, it re-
quires extensive computation due to the iterative message 
passing operations. In this paper, we present a new process 
element (PE) for efficient message construction. The effi-
ciency is gained by exploiting the unique characteristics of 
the generalized Potts model (truncated linear mode) of the 
smoothness term in the Markov random field. For stereo 
estimation with L disparity values, the algorithm successful-
ly reduces the computation from O(L2) to O(L) and retains 
the high throughput and low latency. Compared with the 
direct message construction PE, our method achieves 
87.14% computation saving and a 94.38% PE area reduction. 
 

Index Terms— Belief propagation, hardware imple-
mentation, stereo estimation. 
 

1. INTRODUCTION 
 
Many problems in computer visions and image processing 
attempt to assign an optimal label to each node (pixel, block, 
or other element) in the image. A label stands for a local 
quantity, which can be a disparity vector or a motion vector. 

The optimal label assignment can be formulated as a 
problem of energy (cost) minimization on a Markov Ran-
dom Field (MRF). Typically, the energy has two terms: a 
unary data term Ed that penalizes the inconsistence with the 
observed data, and a pairwise smoothness term Es that fa-
vors the spatial coherence of the labels. The optimal labels 
{lp} should minimize the combination of these two terms: 
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where L is the set of possible labels, P is the set of all nodes 
and G is the specified neighborhood, such as the 4-nearest 
neighbors. 

Recently, efficient algorithms, such as graph cuts [1], 
(loopy) belief propagation [2], and numerous variants [3], 
for solving Eq. (1) have received increasing attention. They 

can find a strong locally optimal solution in polynomial time 
and thus enable many applications such as disparity estima-
tion [6], image denoising, inpainting, image stitching, bi-
layer segmentation, etc [3]. 

While the software implementation of these algorithms 
works well, the hardware implementation has not been fully 
addressed in the past. The hardware implementation requires 
different considerations: bandwidth, internal and external 
memory size, degree of parallelism and regularity of memo-
ry access, etc.  

In our initial study, we found that belief propagation 
among others has the highest potential for hardware imple-
mentation [5]. It is highly parallel and only uses simple op-
erations. We have reduced the bandwidth and memory 
overhead for hardware implementation in [4]. However, the 
straightforward hardware implementation is still prohibitive 
due to the amount of computation for message construction.  

In this paper, we focus on the computational issue and 
propose a new processing element (PE) for the message 
construction, particularly for stereo estimation applications. 
The algorithm behind the PE exploits the unique property of 
the smoothness terms commonly used in stereo estimation. 
Compared with the PE that performs the traditional message 
construction, our PE requires only a fraction of the computa-
tion and area. 

The rest of the paper is organized as follows. In Section 
2, we review the original belief propagation technique and 
analyze its message computation. In Section 3, we present 
the proposed hardware-oriented fast message computation 

 

+

MRF Graph

message

message

message message
Data Cost

Smoothness Prior
Between node p and q

T

lp - lq

Node p

Node q

Node r

Node s

Node u

s

r

p q

u

t
pqM

1t
rpM

1t
spM 1t

upM

 
Fig. 1. Message computation of belief propagation 
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algorithm and the coresponding PE design in detail. In Sec-
tion 4, the comparison between the proposed algorithm and 
previous ones from the hardware perspective is given. Final-
ly, we conclude this paper in Section 5. 
 

2. BELIEF PROPAGATION 
 
Belief propagation (BP) iteratively performs message pass-
ing operations. At iteration t, each node p sends a -
dimensional message  to its neighbor q. Each entity 

(l) in the message can be expressed as follows: 

1
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where L is the set of all labels,  is the number of labels, 
and Np is the set of the neighbors of p, as shown in Fig. 1. 

(lq) encodes the opinion of p about assigning label lq to 
q. Node p first scans all labels l' and decides the one that 
gives the greatest support for assigning l to q based on 1) the 
smoothness (compatibility) cost Es(lq,l') between l' and lq, 2) 
the self-judgment cost Ed(l') of p about being assigned l', 
and 3) the opinion (l') from neighbors expect q (Np\q) 
about assigning l'.  

All nodes exchange messages (opinions) about the la-
bel assignment and, through iterations, nodes far away from 
p can influence p’s label assignment. According to [3], we 
define a single iteration as that of propagating a message 
from the top-left node to the bottom-right one, and then 
propagating in the opposite direction. After an enough num-
ber of iterations, say K, the label of p is determined based on 
the local likelihood and the messages from the neighbors as 
shown in Fig. 2(b): 

argmin .
p

K
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The labels thus obtained correspond to a strong local mini-
mum of the energy function (1). BP has several advantages 
for hardware implementation. Firstly, it is highly parallel 
because each node can operate independently in message 
passing. Secondly, it only uses simple operations such as 
additions and comparisons. Third, the memory access is 

regular. If we update the message sequentially, the required 
input data can be streamed into the processor with ease.  

However, there is an issue related to the extensive 
computation required by BP. In each iteration, a image of N 
pixels with 4-connected neighborhood takes 4N message 
computations. According to Eq. (2), a message needs L(3+L) 
additions and L(L–1) comparisons. The constant factor 3 is 
included to account for the reuse of some partial summation 
results, as described in [7]. The computational complexity is 
proportional to O(NL2). In stereo estimation of a VGA-sized 
image pair with 60 disparity values, a single BPM iteration 
requires 4.64G additions and 4.35G comparisons. 

Therefore, fast message computation strategies must be 
applied. In [7], a two-pass algorithm with O(NL) complexity 
is proposed. This method only needs (3+2)L additions and 
2(L−1) comparisons to construct a message. However, it 
induces sequential dependency, which makes the parallel 
processing impossible. In hardware implementation, the 
cycle count and the latency linearly increase with L. 

In order to allow for large discontinuities in the labe-
ling, the cost function stops growing after the difference 
becomes large. A popular smoothness term in stereo algo-
rithms is the generalized Potts model. It is a truncated linear 
function with the cost linearly increases with the distance 
between the labels p and q up to some level:  

,  = min( | |, ),s ql L
E l l l l T  (4) 

where λ is the weight of the smoothness cost, and T controls 
when the cost should stop increasing (Fig. 3).  
 
3. FAST MESSAGE COMPUTATION ALGORITHM 

 
We attack the computational issue at the algorithm level by 
proposing an efficient message computation method. The 
proposed hardware-oriented algorithm produces the results 
identical to the original method. We will then present the 
corresponding parallel PE design for the algorithm. 

The pseudo codes of different message construction 
methods are listed in Table I, II, and III. All functions load 
three incoming messages Mu, Mr, Ms, the local data term D, 
and the smoothness term V (tabularized Es(l, l')), and gene-
rates the outgoing message Mq. The loops that can be per-
formed in parallel are indicated. Let DA and DC denote the 
latency of the adder and comparer respectively. The total 

0 1 2 3 4 5  
Fig. 3. An illustration of the truncated linear envelope of 6 cones in 
the case of one-dimensional labels. The red line is the final mes-
sage. λ=2 and T=10. 
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Fig. 2.  (a) A message at iteration t from p to q is constructed using
the messages from r, s, and u to p at iteration t 1. (b) The node p
collects all messages from the neighbors to decide the best label. 
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latency for each stage in the pseudo code is shown at right. 
Note that in the pseudo codes, we include all possible par-
allelism to not only our algorithm, but also the original BP 
and the efficient BP algorithm in [7]. 

In original BP, the messages can be calculated by gene-
rating all L2 hypotheses first, and then finding the L minimal 
final entities from them in parallel. The latency of this oper-
ation is log2(L)DC. However, it requires L2 temporal regis-
ters and operators. If we give up the parallelism, it takes O 
(L2) cycles. 

The software-efficient algorithm in [7] is shown in Ta-
ble II. The entities are updated sequentially in two forward-
backward passes and then truncated by the threshold. The 
sequential operation is suitable for software but causes a 
huge latency and low throughput in hardware. In hardware 
implementation, it is actually much slower than the paralle-
lized original BP. 
 
3.1. Proposed Algorithm 
 

We find that in the stereo estimation, the truncated linear 
function is commonly applied for the smoothness term. This 
function increases as the distance between the labels l and l' 
increases up to a certain level, and then becomes fixed to a 
threshold value T, which is typically 1 or 2.  

Because all truncated values are constant, the L-to-1 
comparisons for the i-th entity can be reduced to (2T−1)-to-
1 comparisons from i−T+1 to i+T−1 neighboring labels, plus 
one comparison with the global minimum threshold, as 
shown in Table III. All redundant additions and compari-
sons can be removed. Take Fig. 3 as the example, all non-
global minimum thresholds (green lines) are larger than the 
global minimum one (blue line) and can be skipped in the 
comparison process. 

Furthermore, the local minimum cost comparison and 
the global minimum threshold finding can be done in paral-
lel. All the above results in an efficient hardware design 
with reduced data access and fan-out. This method can also 
be generalized to handle many robust functions commonly 
used as the smoothness term, as described  in [4]. 
 
3.2. Processing Element Design 
 
The data flow and the processing element designs are 
present in Fig. 4 and Fig. 5, respectively. In the proposed 
method, only neighboring 2T−1 hypotheses are generated 
and compared. In typical cases, T=2, and thus only three 
hypotheses are compared. Then the minimum hypothesis is 
then truncated by the global minimum threshold, which is 
generated once and served for all entities. The global mini-

Table I. Message computation flow in original BP 
BuildMessageOriginalParallel(Mq, Mr, Ms, Mu, D, V) Latency 
for l = 0,…, L−1 in parallel    

H[l] = (Mu[l]+Mr[l])+(Ms[l]+D[l]); 
End 

2DA 

for l = 0,…, L−1 in parallel   
for m = 0,…, L−1 in parallel 1 ADD 

M_part[l][m] = H[m]+ λV[m][l]; 
end 

end 
for l = 0,..., L−1 in parallel   

for m = 0,…,L−1 in parallel  log2(L) CMP 
Mq[l] = min(M_part[l][m], Mq[l]) 

end 
end 

DA +  
log2(L)DC 

Table III. Proposed fast, hardware-oriented  
message computation algorithm 

BuildMessageProposed(Mq, Mr, Ms, Mu, D, V) Latency 
for l = 0,…, L−1 in parallel    

H[l] = (Mu[l]+Mr[l]) + (Ms[l]+D[l]); 
end 

2DA 

//The local minimum cost  comparison phase 
for l = 0,…, L−1 in parallel 1 ADD 

for m = −T+1, , T−1 in parallel 
M_part[l][l + m] = H[l + m]+ λV[l + m][l]; 

end //for l 
for l = 0,…, L−1 in parallel  

for m = −T+1, , T−1 in parallel log2(2T−1) CMP 
M[l] = min(M_part[l][l + m], M[l]); 

end 
end 

DA+ 
log2(2T-1)DC 

//The global minimum threshold phase 
for l = 0,…, L−1 in parallel log2(L) CMP 

M_min = min(H[l]+λT, M_min); 
end 

log2(L)DC+DA 

//Global truncation phase 
for l = 0,…, L−1 in parallel 1 ADD and CMP 

Mq[l] = min(M[l], M_min); 
end 

DA+ DC 

 

Table II. Fast message computation in [7] 
BuildMessageEfficient(Mq, Mr, Ms, Mu, D, V)  Latency 
for l = 0,…, L−1 in parallel 

H[l] = (Mu[l]+Mr[l])+(Ms[l]+D[l]); 
end 

2DA 

for l = 1,…, L−1 L-1 ADD and L−1 CMP 
H[l] = min(H[l-1]+λ, H[l]); 

end 
for l = L−2,…, 0 L−1 ADD and L−1 CMP 

H[l] = min(H[l+1]+λ, H[l]); 
end 

2(L-1)× 
(DA+DC) 
 

//Minimum truncation phase 
M_min=M[0]; 
for l = 1,…, L−1 in parallel log2(L) CMP 

M_min = min(H[l], M_min); 
end 
for l = 0,…, L−1 in parallel 1 ADD and 1 CMP 

Mq[l] = min(H[l], M_min + λT); 
end 

log2(L)DC 

+ DA+Dc 
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mum threshold finding and local minimum cost comparison 
can be performed in parallel. 
 

4. COMPARISON AND DISCUSSION 
 
The complexity-latency-throughput comparisons of three 
methods are listed on Table IV. Compared with the original 
message computation, the proposed algorithm has a much 
lower complexity but still preserves the high throughput and 
the low latency. Only an additional Dc latency is included. 
On the contrary, the efficient BP method [7] has the same 
complexity, but has a much larger latency and low through-
put. If we measure the operation count, the proposed algo-
rithm and the efficient BP method have similar performance. 
Note that the proposed acceleration is a low-level technique 
is independent of the high-level applications.  

We synthesize the circuits by using the UMC90nm li-
brary with the critical path constraint 10ns. Compared with 
the original message computation method, the proposed 
method reduces 94.4% gate counts, as shown in Table V. 
Moreover, the proposed algorithm has much less fan-outs 
than the original method does, and hence the latency of the 
critical path is greatly reduced. 

Finally, we apply our algorithm to two different mas-
sage passing schemes, the BPM [3] and the tile-based BP 
proposed in [5]. The software execution time is shown in 
Table VI. We can see that the execution time is accelerated 
by a factor of 5.53 in BPM and 3.93 in tile-based BP. This 
means our algorithm is also beneficial for the software im-
plementation. 
 

5. CONCLUSION 
 
Belief propagation is a popular global energy minimization 
technique. It can obtain a much better solution than the local 
optimization algorithm, but is also more computational in-
tensive. In this paper, we have proposed a fast message 
computation algorithm for BP. By only generating and 
comparing a small number of hypotheses and the global 
minimum threshold, the proposed algorithm can greatly 
reduce the computational complexity. The low latency also 
enables the high throughput in parallel processing. We hope 
this new design can make the belief propagation a more 
practical algorithm for real-time applications. 
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Fig. 4. The data paths for (a) the generation of H[i] and (b) the generation 
of hypotheses. 
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Fig. 5. (a) The PE and data flow of the traditional message construction. 
(b) The proposed PE and data flow. The grey items have the same struc-
ture but different inputs and work in parallel. 

Table IV. Overall comparison of different methods 
 Original 

[3] 
Efficient BP 

[7] Proposed 

Complexity OO(L2)  OO(L)  OO(L) 
Latency un-
der max par-

allelism 

3DA+ 
log2(L)DC 

3DA+ 
2(L-1)*(DA+DC) + 

2log2(L)DC +DC 

3DA+ 
log2(L)DC+ 

 DC 
Throughput L  1  L  
Operations 

for L=64, T=2 4480 576 572 

Table V. Comparison of gate count 
L=64 

UMC90nm@10ns 
Original  

[3] Proposed 
Reduction  

ratio 
Gate count 533.8k 30k 94.38% 

Table VI. Comparison of the software execution time 
CPU: Core2Duo E8400 

Image Size: 450x375 ,L=64 BPM [3] Tile-based BP  
[4] 

Original algorithm 20.984s 14.688s 
Proposed algorithm 3.797s 3.733s 
Speedup ratio (original/fast) 5.53 3.93 
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