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ABSTRACT

In this paper, we present a variational framework for joint disparity
and motion estimation in a sequence of stereo images. The prob-
lem involves the estimation of four dense fields: two motion fields
and two disparity fields. In order to reduce computational complex-
ity and improve estimation accuracy, the two motion fields, for the
left and right sequences, and the disparity field of the current stereo
pair are jointly estimated, using the stereo-motion consistency con-
straint. In the proposed variational framework, the joint estimation
problem is formulated as a convex programming problem in which
a convex objective function is minimized under specific convex con-
straints. This minimization is achieved using an efficient parallel
block-iterative algorithm. Experimental results involving real stereo
sequences indicate the feasibility and robustness of our approach.

Index Terms— Stereo sequences, Disparity, Motion, Joint esti-
mation, Convex optimization, Regularization

1. INTRODUCTION

The recovery of depth and motion information from a sequence of
stereo images is a very common task in several applications in com-
puter vision, including 3D tracking, stereo video coding, 3D scene
interpretation and 3D television. Motion estimation uses two consec-
utive frames from a video sequence, whereas disparity estimation is
performed within a pair of stereo images taken from distinct view-
points. Finding an accurate correspondence between points in two
stereoscopic or temporal sequence images is the most important and
difficult step in both depth and motion estimation.

The problem of establishing spatial or temporal correspon-
dences between pixels has been investigated for many years [1, 2].
A number of studies have therefore been reported including feature-
based, area-based, and energy-based approaches. Feature-based
approaches are those which use invariant geometric primitives and
match extracted salient features, such as edges, corners or regions.
They provide accurate results, as the features are discriminant and
have many attributes, but provide sparse displacement results. Area-
based approaches match image pixels based on their positions and
intensity values. They offer the advantage of directly generating
dense displacement fields by correlation over local windows, but of-
ten fail around discontinuities and in textureless areas. The energy-
based approaches are mainly based on optimizing a global energy
function, which is typically the sum of a data term and a smoothness
term. These global approaches also produce dense displacement re-
sults, but are more accurate than area-based approaches, particularly
in the challenging image regions like occlusions. Recently, many
powerful global stereo and motion matching algorithms have been
developed based on dynamic programming [3, 4], graph cuts [5] or

belief propagation [6]. Variational approaches have also been very
effective for solving the correspondence problem globally [7, 8, 9].

The estimation of motion and disparity in stereo image se-
quences has a high computational cost, especially when a global
approach is used to compute dense and accurate solutions. One way
to overcome this problem is to jointly estimate disparity and motion
fields using the stereo-motion consistency constraint, which relates
the four displacement fields (two motion fields and two disparity
fields) involved in each two consecutive stereo frames (see Figure 1).
Based on this constraint, the disparity in the current frame can be de-
duced from the estimated left and right motions and the disparity in
the previous frame. This results in a reduction of complexity as well
as an improvement of estimation performance. Several approaches
have recently been proposed for combining stereo and motion anal-
ysis within a sequence of stereo images [10, 11, 12]. In [13], the
joint estimation was performed on a multi-resolution pyramid of
images using an anisotropic diffusion regularization to preserve im-
age boundaries. In [14], the authors proposed a multi-scale iterative
relaxation algorithm to first calculate the disparity field of the first
stereoscopic pair. Using the computed disparity field and the consis-
tency constraint, the two motion fields are estimated together with
a partially constructed current disparity field, which is refined later
using the same multi-scale relaxation algorithm. In [15], an edge-
preserving regularization algorithm that simultaneously calculates
dense disparity and motion fields is proposed. The authors use the
Euler-Lagrange equations within a variational framework to mini-
mize a global edge-preserving energy function. Although interesting
results were reported, the discretization of the PDE, using a finite
difference method, is a difficult and numerically instable task.

In this work, we propose a variational optimization method for
jointly estimating dense disparity and motion vector fields from two
consecutive stereo frames. Based on the stereo-motion consistency
constraint, a global energy function is minimized under various con-
vex constraints, to simultaneously estimate left and right motion
fields. The disparity of the current stereo pair is implicitly con-
structed by applying the joint consistency constraint, and is refined
later using the dense disparity estimation method we proposed in
[9]. Since motion fields vary smoothly in homogeneous regions and
change abruptly around object boundaries, we use an edge preserv-
ing regularizing constraints based on the Total Variation measure,
which has already proven to be very useful in image recovery and
denoising problems [17], so motivating its use in the field of varia-
tional stereo [9] and optical flow methods [7]. Within the proposed
set theoretic framework, the joint estimation problem is solved us-
ing a parallel block iterative decomposition method, which provides
dense and accurate displacement fields and offers great flexibility for
incorporating several a priori constraints.
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Fig. 1. The stereo-motion consistency constraint.

The outline of the paper is as follows. In Section 2 the rela-
tion between motion and disparity is presented. In Section 3, we de-
scribe the simultaneous estimation framework we propose. Section 4
presents experimental results, and Section 5 concludes the work.

2. JOINT ESTIMATION MODEL

A sequence of stereo images, obtained from two cameras separated
by a fixed baseline distance, shows the temporal evolution of a 3D
scene from two slightly different viewpoints. In order to allow for
an accurate stereo sequence analysis, it is essential to exploit the
spatio-temporal relationships that exist between the different images
of the sequence. Joint estimation of disparity and motion displace-
ment fields is an efficient way to benefit from these relationships,
leading therefore to improving results while reducing the computa-
tional cost.

Consider two consecutive stereo image pairs, denoted by It
l , It

r ,
It+1

l and It+1
r , which are, respectively, the left and right views of the

previous and current frames of a stereo image sequence. The stereo
pairs are assumed to be rectified, so that the geometry of the cameras
can be considered as horizontal epipolar [16]. Let vl = (ul, vl) and
vr = (ur, vr) be the left and right motion fields, and dt and dt+1

designate disparity vector fields of the stereo image pair at t and
t + 1. If these fields relate to the projections of the same physical
point in the scene, the following constraint must hold:

dt + vr − dt+1 − vl = 0. (1)

This constraint, illustrated in Figure 1, establishes the relationship
between motion vectors and disparity vectors. Assuming that the
spatial point is projected to the pixel s = (x, y) on frame It

l , Eq. (1)
can be rewritten as follows:{

dt+1(s + vl(s)) � ur(x + dt(s), y) + dt(s) − ul(s),

vr(x + dt(s), y) � vl(s).
(2)

Using the above constraint, the disparity field obtained at time t can
be used to simultaneously estimate left and right motion fields. The
disparity field at time t + 1 is then implicitly constructed using the
three computed fields and the first equality in (2). However, as this
equality is only approximate because of occlusions and accumula-
tion of errors, we only use it to provide an initial disparity field,
which will be refined later through the convex optimization approach
we proposed in [9]. Furthermore, according to Eq. (2), the vertical
motion in the right sequence can be deduced directly from that in
the left sequence. So, by applying the stereo-motion consistency
constraint, we improve estimation accuracy and reduce the number
of displacement vectors to be computed.

3. SIMULTANEOUS MOTION AND DISPARITY
ESTIMATION

The joint estimation framework we propose in this work consists of
estimating the left and right motion vectors and the disparity at time
t + 1. The disparity at time t is considered as known, that is pre-
viously estimated. The left and right motion vectors are simultane-
ously estimated using a convex programming approach, in which a
quadratic objective function is minimized subject to specific convex
constraints.

3.1. Energy model for joint motion estimation

Assuming that the four corresponding points, that are the projections
of the same spatial point, have identical intensity values, the left and
right motion fields can be computed by minimizing the following
cost function:

J̃(vl, vr) =
∑

(x,y)∈D
[It

l (x, y) − It+1
l (x + ul, y + vl)]

2

+
∑

(x,y)∈D
[It

r(x + dt), y) − It+1
r (x + dt + ur, y + vl)]

2

+
∑

(x,y)∈D
[It+1

l (x + ul, y + vl)− It+1
r (x + dt + ur, y + vl)]

2 ,

where D ⊂ N
2 is the image support. This function consists of three

data terms: the first two for left and right motion fields and the latter
one for the joint estimation constraint. These expressions are non-
convex with respect to the displacement fields vl and vr . Thus, to
avoid a non-convex minimization, similarly to [1], we consider a
Taylor expansion of the non-linear terms It+1

l (x + ul, y + vl) and
It+1

r (x + dt + ur, y + vl) around initial estimates v̄l = (ūl, v̄l) and
v̄r = (ūr, v̄r), respectively, as follows:

It+1
l (x + ul, y + vl) � It+1

l (x + ūl, y + v̄l)

+ (ul − ūl)I
t+1,x
l + (vl − v̄l)I

t+1,y
l ,

It+1
r (x + dt + ur, y + vr) � It+1

r (x + dt + ūr, y + v̄r)

+ (ur − ūr)I
t+1,x
r + (vr − v̄r)I

t+1,y
r ,

where It+1,x
l , It+1,y

l , It+1,x
r and It+1,y

r are, respectively, the hori-
zontal and vertical gradient of the warped motion compensated left
and right images. Our goal is to simultaneously recover the three
components ul, vl and ur , vr being directly deduced from vl using
Eq. (2). Thus, by setting w = (ul, vl, ur)

� and using the above
linearizations, we end up with the following quadratic criterion to be
minimized:

JD(w) =

3∑
i=1

∑
s∈D

[Li(s) w(s) − ri(s)]
2 , (3)

where
⎧⎨
⎩

L1 = [It+1,x
l , It+1,y

l , 0]
L2 = [0, It+1,y

r , It+1,x
r ]

L3 = [It+1,x
l , It+1,y

l − It+1,y
r , It+1,x

r ],

and
⎧⎪⎪⎨
⎪⎪⎩

r1 = −It+1
l + ūlI

t+1,x
l + v̄lI

t+1,y
l + It

l

r2 = −It+1
r + ūrI

t+1,x
r + v̄rI

t+1,y
r + It

r

r3 = −It+1
l + It+1

r + ūlI
t+1,x
l + v̄lI

t+1,y
l

− ūrI
t+1,x
r − v̄rI

t+1,y
r .

Optimizing the criterion (3), known as the data fidelity term in the
inverse problem literature, aims at obtaining the best estimate of the
vector parameters w knowing {L(i)}i and {r(i)}i. However, the
optimization problem that is solely based on the data fidelity objec-
tive function admits an infinite number of solutions due to the fact
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that three variables have to be determined for each pixel and that
the components of {L(i)}i may simultaneously vanish. This prob-
lem is therefore ill-posed, and, in order to get satisfactory solutions,
it is necessary to consider additional constraints derived from prior
knowledge. In this work, we seek to efficiently describe available
constraints as closed convex sets in a Hilbert space H such as to
formulate the problem, within a set theoretic framework, as follows:

Find u ∈ S =

m⋂
i=1

Si such that J(u) = inf J(S) , (4)

where the objective J : H → (−∞, +∞] is a convex function and
the constraint sets (Si)1≤i≤m are closed convex sets of H. Con-
straint sets can generally be modelled as level sets of continuous
convex functions.

3.2. Convex constraints on motion vectors
The construction of convex constraints is derived here from the prop-
erties of the estimated fields. An example of possible prior knowl-
edge is the range of motion values. Given a set of candidate mo-
tion vectors, we can impose minimal and maximal amplitudes on the
amount of allowed horizontal and vertical motion, denoted respec-
tively by umin, umax, vmin and vmax. The constraint sets associated
with this information are

S1 = {w ∈ H | umin ≤ ul ≤ umax} , (5)

S2 = {w ∈ H | vmin ≤ vl ≤ vmax} , (6)

S3 = {w ∈ H | umin ≤ ur ≤ umax} . (7)

Furthermore, motion vectors should be smooth in homogeneous ar-
eas while keeping sharp edges [7]. The classical Tikhonov regular-
ization [19], used in many ill-posed problems, tends to oversmooth
discontinuities [1]. In this work, we circumvent the problem by us-
ing a total variation (tv) regularization constraint [17]. Basically, we
introduce a bound on the integral of the norm of the spatial gradient
whose effect is to smooth homogeneous regions in the motion field
while preserving edges. Imposing an upper bound on the total vari-
ation allows to efficiently restrict the solution to the constraint sets

S4 = {w ∈ H | tv(ul) ≤ τul} , (8)

S5 = {w ∈ H | tv(vl) ≤ τvl} , (9)

S6 = {w ∈ H | tv(ur) ≤ τur} , (10)

where τul , τvl and τur are positive constants that can be estimated
from prior experiments and image databases.

The problem of motion estimation can finally be formulated as
jointly finding the left and right motion fields which minimize the en-
ergy function (3) subject to the constraints (Si)1≤i≤6. Many power-
ful optimization algorithms have been proposed to solve this convex
feasibility problem. For the current work, we employ the constrained
quadratic minimization method developed in [18] and particularly
well adapted to our needs. However, due to space limitation, we will
not describe the algorithm but the reader is referred to [18, 9] for
more details. By applying this algorithm, we obtain the two dense
motion fields, and we can construct the initial disparity field for the
second stereoscopic pair by using Eq. (2). The obtained disparity is
sufficiently accurate to serve as a starting point for the convex pro-
gramming approach we propose in [9] for dense disparity estimation.

4. EXPERIMENTAL RESULTS
We evaluated the proposed method on the real stereo image se-
quences “Outdoor” and “Aqua”, for which the original left images
of frames 44 and 1 are shown in Figures 2(a) and 2(b), respectively.

(a) (b)

Fig. 2. Left images for (a) “Outdoor” and (b) “Aqua” Stereo se-
quences.

The sequence “Outdoor1” shows first a static scene containing a
background wall, a staircase and a uniform panel, then two persons
enter the scene. In the sequence “Aqua”, there is a global camera
panning and a small horizontal fish motion. First of all, the dis-
parity in the first frame is estimated using the method in [9] (see
Figure 3(a)). The left and right motion vectors are then jointly esti-
mated using the framework described in Section 3. A block based
method is used to produce initial estimates for the dense motion
fields, by looking for pixels in the search range with the maximum
correlation between each block, of size 9 × 9 centered at the pixel
of interest, in the previous frame and displaced blocks in the current
frame. The horizontal and vertical motions of the left “Outdoor”
and “Aqua” sequences are shown in Figures 3(b) and 3(c), respec-
tively. We notice from these figures that our method allows to obtain
consistent and smooth displacement vectors while preserving dis-
continuities around object boundaries. In the sequence “Outdoor”,
the unified motion of the background and the independent motion
of the person are clearly distinguished. Moreover, the unified hori-
zontal motion of both background and objects in the scene “Aqua”
is also clearly perceived from computed motion vectors. Using the
disparity in the previous frame, the left and right motion vectors and
the constraint between motion and disparity, we compute the initial
disparity of the current frame (see Figure 3(d)), which is refined
later using the constrained quadratic minimization method proposed
in [9]. The final estimated disparity field is shown in Figure 3(e).
As expected, initial matching errors produced by the occlusions of
motion are greatly reduced by using the refinement stage, which
also guarantees that the obtained disparity field satisfies the imposed
constraints, especially the disparity range constraint.

As the initial disparity is computed using accurate disparity and
motion fields, the joint disparity estimation is better than that of
the separate estimation where the initial disparity is obtained from
a block-based correlation technique. Figure 4 shows the PSNR plots
for the prediction of the current left images for frames 44 to 53 of the
“Outdoor” sequence. The left images are predicted from right im-
ages through the current estimated disparity fields. The reconstruc-
tion errors obtained using the proposed joint estimation algorithm
are compared with those obtained by applying a separate disparity
estimation and a block-matching method. As can be seen from the
curves in Figure 4, the joint estimation method performs well and
better than the direct estimation and the block-matching disparity
compensation. An additional benefit from the joint estimation model
is the reduction of computational load by about 30 to 40 percent,
since we have reduced the number of displacement vectors to be es-
timated and saved the time-consuming initial disparity computation.
Notice that our current implementation was completely written in
Matlab code and so more efficient implementations can be written in
C. In addition, on a parallel architecture, we can exploit the parallel

1http://www.vision.deis.unibo.it/smatt/stereo.htm
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(a) (b) (c) (d) (e)
Fig. 3. Disparity and motion fields in “Outdoor” (top) and “Aqua” (bottom) stereo sequences: (a) disparity in the previous frame (b) horizontal
left motion (c) vertical left motion, (d) initial disparity and (e) final constrained disparity in the current frame.

structure of the algorithm, where subgradient projections on the dif-
ferent constraint sets may be computed in parallel, to further reduce
the computational time.

5. CONCLUSION
In this paper, a new method for the joint estimation of motion
and disparity in stereo image sequences was investigated. At first,
a robust and efficient optimization algorithm was developed to
simultaneously estimate accurate left and right motion vectors.
Within a convex set theoretic framework, this algorithm minimizes
a quadratic convex objective function subject to some appropri-
ate convex constraints. Secondly, the disparity field at the current
frame was estimated using the consistency constraint, the left and
right motion vectors and the disparity field obtained at the previous
frame. The proposed method has given promising performance
results while reducing the computational cost.
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Fig. 4. PSNR plot of the predicted current left images of “Outdoor”
sequence using the joint estimation model, the separate constrained
estimation and the block-based correlation.
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