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ABSTRACT

We propose an area-based local stereo matching algorithm that
yields accurate disparity estimates, while achieving the real-time
speed completely on the graphics processing unit (GPU). For a local
stereo method, the key challenge is to decide an appropriate sup-
port window for the pixel under consideration. Our stereo method
starts with computing an upright local cross adaptively for each an-
chor pixel, which defines a per-pixel support skeleton. Next, based
on this compact local cross representation, we aggregate the match-
ing costs in a shape adaptive full support region using two orthog-
onal integration steps. Approximating scene structures accurately,
the proposed method is among the best-performing real-time stereo
methods according to the benchmark Middlebury stereo evaluation.
Additionally, our method is very easy to implement, memory effi-
cient, and hence it is promising for many practical applications.

Index Terms— Stereo matching, local adaptation, GPGPU

1. INTRODUCTION

Stereo matching has been an active research topic for decades. Re-
cent years have particularly witnessed a significant advance in this
field, concerning the disparity estimation accuracy. However, these
state-of-the-art stereo methods are still far from online processing,
making them inappropriate for practical applications with a stringent
real-time requirement, e.g., robot navigation and interactive view in-
terpolation. As a result, real-time stereo matching has attracted in-
creasing attentions, where the challenge is to generate accurate dis-
parity maps while still maintaining the real-time execution speed.

In general, stereo methods can be categorized into two classes:
local methods and global methods. Local methods, without involv-
ing complex optimization schemes, are arguably easy to implement
in both software and hardware. Gong et al. [1] has evaluated several
real-time local stereo methods, which lead to impressive disparity es-
timation speeds. Instead, enforcing the explicit disparity smoothness
optimization, global stereo methods often yield superior disparity
accuracy, but traditionally they are too time-consuming for real-time
usage. Recently, Yang et al. [2] and Wang et al. [3] have shown
that global methods are feasible for online execution, exploiting the
horsepower of the modern graphics processing unit (GPU).

Aiming at achieving disparity accuracy comparable to global
methods, while still preserving the implementation advantages of
local methods, we are motivated to push forwards the accuracy of
the local stereo solution under the real-time constraint. In this paper,
we propose a novel local stereo algorithm based on locally adap-
tive cross representations. The key algorithmic ideas are two-fold.
First, a locally adaptive upright cross is decided upon the color sim-
ilarity, defining an initial support skeleton for the anchor pixel (see
Fig. 1(a)). Second, we dynamically construct a shape adaptive full
support region in the cost aggregation step, reusing the pre-computed
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Fig. 1. Cross-based local support region representation and con-
struction on the Tsukuba image [6]. (a) Sample local crosses for the
anchor pixels, e.g., p. (b, c) For better viewing effects, the dense
cross map M is split to show the horizontal and vertical cross arm
lengths in (b) and (c), separately. In (b), {R,G,B,A} color channels
are set to 15× {h−p , h+

p , 0, 0}, while 15× {v−p , v+
p , 0, 0} in (c). (d)

Configuration of a cross-based support region for the anchor pixel p.

neighboring cross configurations. The end result is that appropriate
local support regions are efficiently derived from the fairly compact
cross-based representation, leading to accurate disparity estimates
for different pixel locations. In addition, we have implemented the
proposed method on the GPU, optimizing its real-time performance.

Compared with the existing real-time methods, the proposed
method has some unique advantages. First, yielding the similar
disparity accuracy, our method is much easier to implement, more
memory efficient (crucial for embedded platforms) than the lead-
ing real-time global methods [2, 3]. Furthermore, our method runs
1.8 times faster than Yang et al.’s method [2] on the identical GPU.
Also, it can free up the CPU for other high-level tasks, unlike Wang
et al.’s method [3] that has to use both the GPU and the CPU inten-
sively. Second, under the real-time constraint, the proposed method
outperforms all the existing real-time local methods [1, 4] in terms
of disparity accuracy. It is particularly better than others [1, 3, 4] for
the challenging depth discontinuities. Third, our cross-based local
geometry approximation provides a real-time alternative to the pop-
ular yet offline mean-shift segmentation approach [5]. The latter is
widely used in state-of-the-art stereo algorithms as a critical module.
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Fig. 2. Outline of the proposed stereo algorithm. {I, I ′} is the input
stereo image pair, and D∗ is the estimated dense disparity map.

2. OUR ALGORITHM

The proposed algorithm consists of the following major steps
(Fig. 2). First, each image of a given stereo pair is {I, I ′} is in-
dependently analyzed to derive a dense local cross map. Second, we
aggregate raw matching cost in a pixel-wise adaptive local region,
combining the local support configurations of a pair of hypothet-
ical correspondences symmetrically. Next, the aggregated cost is
penalized differently according to the aggregation area size, before
applying the Winner-Takes-All (WTA) strategy [7] for disparity se-
lection. Finally, we perform a simple method to detect and handle
unreliable disparity estimates in the image border regions. This
results in a dense disparity map D∗ = {d∗p | p ∈ I} for the left view.

2.1. Local cross construction

For accurate local stereo matching, it is important to decide an ap-
propriate local support region for each pixel adaptively. In principle,
this local support region should only contain the neighboring pix-
els from the same depth with the pixel under consideration. To this
end, we propose a compact cross-based approach to represent and
construct local support regions. We use the common assumption
that pixels with similar intensity within a constrained area are likely
from the same image structure, therefore having similar disparity.

The key idea of the proposed approach is to decide an upright
cross for every pixel p = (xp, yp) in the input left image I (similar
for the pixel p′ ∈ I ′). As shown in Fig. 1(d), this pixel-wise adaptive
cross consists of two orthogonal line segments, i.e., the horizontal
segment H(p) and the vertical one V (p). These two segments inter-
sect at the anchor pixel p, and they jointly define the local support
skeleton for the pixel p. Instead of fixing the size of a local cross,
we adaptively change its four arm lengths to reliably capture the lo-
cal image structure. More specifically, for a given pixel p ∈ I , we
first decide a parameter set {h−p , h+

p , v−p , v+
p } that denotes the left,

right, up, and bottom arm length, respectively. Then, this pixel-wise
parameter set is packed into four channels (RGB + alpha) of a dense
texture map M (see Fig. 1(b, c)), with one byte for each channel.

As a general concept, the local cross can be decided using var-
ious specific approaches. Here, we present an efficient approach
based on color similarity under the connectivity constraint. Our ap-
proach starts with applying a separable 3×3 median filter to the input
image I , suppressing the impact of image noise as well as subtle non-
Lambertian effects. Next, the arm lengths {h−p , h+

p , v−p , v+
p } are de-

cided upon color similarity. Taking h−p as an example, we perform a
color similarity testing for a consecutive set of pixels (with a preset
maximum search range L), which reside on the left horizontal side
of the pixel p. The purpose is to search for the largest left span r∗,
where all the pixels covered, i.e., {pr = (xp−r, yp) | 0 ≤ r ≤ r∗},
are similar to the anchor pixel p in color. More clearly, this means
∀r ≤ r∗, δ(pr, p) = 1, and δ(pr∗+1, p) = 0 (if r∗ < L), where
δ(p1, p2) is an indicator function. It signals whether two pixels p1

and p2 are similar based on all color bands:

δ(p1, p2) =

8<
:

1 , max
c∈{R,G,B}

“
|Ic(p1) − Ic(p2)|

”
≤ τ

0 , otherwise,
(1)

where Ic is the intensity of the color band c. Set empirically, τ
controls the confidence level of color similarity. Once the largest
left span r∗ is derived, we set the left arm length h−p = max(r∗, 1),
enforcing a minimum support region of 3×3 for reliable matching.
Based on the arm lengths {h−p , h+

p , v−p , v+
p } decided for the pixel p,

two orthogonal cross segments H(p) and V (p) are easily defined.
For instance, H(p) = {(x, y) | x ∈ [xp − h−p , xp + h+

p ], y = yp}.
Despite that only four parameters need to be stored for each

pixel, a shape adaptive full support region U(p) is readily deter-
mined for the pixel p. As shown in Fig. 1(d), the local support region
U(p) is delineated as an area union of multiple horizontal segments
H(q), sliding along the vertical segment V (p) of the anchor pixel p:

U(p) =
[

q∈V (p)

H(q) , (2)

where q is a support pixel located on the vertical segment V (p).
From the generated cross map M , H(q) can also be easily retrieved.

2.2. Cross-based matching cost aggregation

As an area-based local stereo method, the proposed method places
a key emphasis on the cost aggregation step. The goal of this step
is to reduce the image ambiguity by collecting the support from the
neighboring pixels of the same depth, for the pixel under estimation.

Prior to cost aggregation, we first compute the pixel-based raw
matching cost between a pair of corresponding pixels, i.e., s in the
left image I and s′ in the right image I ′ (with a disparity value d),

ed(s) = min
“ X

c∈{R,G,B}

˛̨
Ic(s) − I ′c(s

′)
˛̨
, T

”
×

255

T
, (3)

where T controls the truncation limit of the matching cost. The trun-
cated cost is scaled to 255 to make full use of the range of one byte.

For reliable cost aggregation, unlike most of local stereo meth-
ods [1, 8], we symmetrically consider both local support regions
U(p) and U ′(p′) decided for the pixel p and p′, respectively. If we
only consider the local support region U(p) for the left image, the
matching cost aggregation will be polluted by outliers in the right
image, i.e., pixels from different depths with the pixel p′ in the sup-
port window. Therefore, combining two local support regions to
define the aggregation region, the normalized matching cost Ed(p)
between the pixel p and p′ is computed as follows,

Ed(p) =
1

‖Ud(p)‖
Ed(p) =

1

‖Ud(p)‖

X
s∈Ud(p)

ed(s) , (4)

with Ud(p) = {(x, y) | (x, y) ∈ U(p), (x − d, y) ∈ U ′(p′)} .

In (4), Ud(p) denotes the combined local support region that con-
tains only the valid pixels, likely having similar disparities with the
anchor pixels p and p′ in both images. ‖Ud(p)‖ is the number of sup-
port pixels in Ud(p), used to normalize the aggregated cost Ed(p).

To speed up the computation of the aggregated cost Ed(p) in (4)
significantly, we transform the double integral of raw matching costs
ed(s) into two orthogonal iterated integrals, as follows,

Ed(p) =
X

s∈Ud(p)

ed(s) =
X

q∈Vd(p)

“ X
s∈Hd(q)

ed(s)
”

=
X

q∈Vd(p)

EH
d (q) ,

(5)
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where EH
d (q) represents the result after the horizontal integration

step. As with Ud(p), Hd(p) and Vd(p) define the combined hori-
zontal and vertical segments, treating two corresponding cross con-
figurations symmetrically. Using only two rendering passes, the pro-
posed cross-based cost aggregation can be efficiently performed.

To utilize the GPU’s SIMD processing capability, we compute
four adjacent disparity hypotheses at a time. The resulting average
costs Ed(p) are packed into the four channels of a color image.

2.3. Area-penalized disparity selection

After cost aggregation, we use a Winner-Takes-All (WTA) strategy
[7] to select the optimal disparity. Instead of only relying on the
average matching cost Ed(p), we include an additional size penalty
term ρ(‖Ud(p)‖), when deciding the disparity d∗p for the pixel p:

d∗p = arg min
d

`
Ed(p) + ρ(‖Ud(p)‖)

´
, d ∈ [0, dmax], (6)

where dmax is the maximum value of possible disparities. The pur-
pose of including such a penalty term is to encourage the selection
of larger support areas, when the average matching costs associated
with different disparities are approximately equal for untextured im-
age regions [8]. Empirically, we set the value of ρ(‖Ud(p)‖) by
evaluating the area ‖Ud(p)‖ against two preset thresholds as follows,

ρ(‖Ud(p)‖) =

8><
>:

0.06 × 255 , ‖Ud(p)‖ ≤ A/4

0.03 × 255 , A/4 < ‖Ud(p)‖ ≤ A

0 , A < ‖Ud(p)‖ ,

(7)

where A = (L+1) × (L+1), and L is the maximum arm length.
Lastly, a 3×3 median filter is applied to refine the disparity map [7].

2.4. Border region handling

As an area-based local stereo method, our algorithm does not reason
about the disparities for the image border regions. But due to occlu-
sions, some pixels in this region are only visible in the left view I ,
which lead to unreliable disparity estimates. To tackle this problem,
we propose a simple border handling scheme without ruining the
real-time speed. The basic idea is to detect unreliable pixels as those
with an estimated correspondence residing outside of the right view
I ′, i.e., whenever xp − d∗p < 1. We then apply a simple two-step
approach to fill reliable disparities in the border regions:

1. For each horizontal scanline y, we search for the rightmost
unreliable border pixel m=(xm, y) with the maximum value
xm. We record O(y) = xm (see the red curve in Fig. 3(b)).

2. For each horizontal scanline y, and for any pixel o to the left
of the pixel v=(O(y)+1, y), its final disparity d∗o is set to d∗v .

Comparing Fig. 3(a) to Fig. 5(c), this border handling scheme re-
duces the all disparity error rate by 1.4% [6] with little overhead.

3. GPU OPTIMIZATION

Besides the general GPU-based optimization techniques [1, 3, 4], we
have applied some particular schemes, further enhancing the perfor-
mance of the proposed stereo method on the GPU.

Scaling arm length values. As we store the arm length (e.g., h−p
) into a 8-bit color channel, we can scale up the value of each arm
length by a factor of 255/L (i.e., 15 × h−p when L = 17) without
exceeding the range of a single byte. This overcomes the numerical
precision problem on the GPU, when the arm length is very small.

y

(a) (b)

m
o

Fig. 3. Border handling on the Teddy image. (a) Without border
handling. (b) Border pixels handled are marked in yellow (and red).
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Fig. 4. Re-packing left-right cross maps {M, M ′} (∀p ∈ M ).

Re-packing left-right cross maps. In the preprocessing step,
we have constructed a pair of local cross maps {M, M ′}, each stor-
ing pixel-wise varying arm lengths for the given images {I, I ′} into
RGBA channels. Since our cross-based cost aggregation is imple-
mented with two orthogonal integration steps, either horizontal or
vertical arm lengths are necessary and sufficient for one integration
rendering pass. To maximize the GPU texture cache locality behav-
ior, we hence re-pack the left-right cross maps as shown in Fig. 4.

Invoking narrow quads for border handling. In Sect. 2.4, a
two-step approach is proposed for border region handling. As the
maximum disparity value is dmax, the rightmost unreliable pixel’s
x-coordinate O(y) ≤ dmax. To avoid largely redundant pixel pro-
cessing for the entire image, we apply the proposed bordering han-
dling only to a rather small set of pixels. For the first step that de-
cides the one-dimensional array O(y), rendering a one-column quad
is sufficient; while for the second step, a narrow quad with a width of
dmax is rendered, covering all the possible unreliable border pixels.

4. EXPERIMENTAL RESULTS

The experiments are based on the benchmark Middlebury stereo
database [6]. The parameters used in our stereo algorithm are set
constant across all experiments, i.e., L = 17, τ = 25, and T = 70.

Quantitative evaluation. Based on the Middlebury online dis-
parity evaluation service [6], Table 1 reports the disparity error rates
measured against the ground-truth disparities. Reusing the identi-
cal names posted online, our method is ranked between the Real-
TimeGPU [3] and CostRelax [9] approaches. It compares favorably
over other existing real-time methods [10, 1, 11], particularly bet-
ter for depth discontinuities. Though our method is slightly outper-
formed by the two leading real-time global methods [2, 3], it does
have a few important advantages. The RealtimeBP method [2] con-
sumes far more memory than ours, which demands eight textures to
store the smoothness term. The RealTimeGPU method [3] has to
transfer the intermediate results back to the CPU for the further pro-
cessing, and also it does not perform well for depth discontinuities.

Visual results. Fig. 5 shows the estimated disparity maps. They
are both piecewise smooth and accurate near depth discontinuities.
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Table 1. Quantitative evaluation results for the new Middlebury stereo database [6]. Blank fields are not reported in the original paper.

Algorithm
Tsukuba Venus Teddy Cones

nonocc. all disc. nonocc. all disc. nonocc. all disc. nonocc. all disc.
RealtimeBP [2] 1.49 3.40 7.87 0.77 1.90 9.00 8.72 13.2 17.2 4.61 11.6 12.4
RealTimeGPU [3] 2.05 4.22 10.6 1.92 2.98 20.3 7.23 14.4 17.6 6.41 13.7 16.5
Our method 2.80 4.84 7.29 2.14 3.40 11.5 9.67 16.3 18.8 5.85 13.7 12.1
CostRelax [9] 4.76 6.08 20.3 1.41 2.48 18.5 8.18 15.9 23.8 3.91 10.2 11.8

Orthog. DP [10] 1.34 3.36 7.10 2.73 3.81 10.1 9.03 16.8 18.4 13.1 20.1 20.1
Adapt.Weight [1] 2.27 3.61 11.2 3.57 4.61 19.8 10.9 18.8 23.2 5.92 14.3 13.8
Realtime DP [11] 2.85 15.6 6.42 25.3

(a) (b) (c)

(d) (e) (f)

Fig. 5. Our resulting disparity maps estimated for Tsukuba, Venus,
Teddy, and Cones stereo images (a-d). Disparity map of Cones esti-
mated with (e) RealtimeBP [2] and (f) RealTimeGPU [3].

Fig. 6. Synthesized center views using the left-view disparity maps.

Compared to the leading real-time global methods [2, 3], our method
preserves the subtle scene structures in the Cones more accurately.

Real-time speed. We tested the proposed algorithm on an
NVIDIA GeForce 7900 GTX graphics card in a 3.2 GHz PC. For a
stereo scene with resolution 384 × 288 and 16 disparity levels, the
speed is about 17 fps using only the computational resources of the
GPU. This speed measurement includes all the memory overhead.

Novel view synthesis. In Fig. 6, we show that the estimated
disparity maps lead to visually plausible synthesized center views,
when integrated into a depth-image-based rendering technique [12].

5. CONCLUSION

This paper proposes a cross-based local stereo matching algorithm,
running in real-time on the GPU. Based on the generated pixel-wise

compact cross, we perform cost aggregation in a shape adaptive lo-
cal support region that approximates varying image structures accu-
rately. Evaluation with the Middlebury stereo benchmark shows that
the proposed method is ranked among the best-performing real-time
stereo methods. In particular, it has the pronounced advantages in the
execution time, memory consumption, as well as yielding accurate
disparity estimates for the challenging depth discontinuities. In fu-
ture work, we plan to further optimize our algorithm on an NVIDIA
CUDA (Compute Unified Device Architecture) capable GPU.
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