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ABSTRACT 
 
Compression of encrypted data can be viewed as a special 
case of distributed source coding and can be achieved by 
applying Slepian-Wolf Coding. However, how to compress 
the encrypted video efficiently remains a challenging 
problem especially for those videos with irregular high 
motion. This paper proposes a novel multi-resolution based 
approach which makes it possible not only to effectively 
derive the temporal side information from previous frames, 
but also to generate the spatial side information by having 
partial access to the current frame. The spatial and temporal 
side information can then be integrated adaptively to 
facilitate the compression. Simulation results show that the 
proposed scheme significantly outperforms other schemes, 
especially for those video clips with irregular high motion. 
 

Index Terms— Compression of encrypted data, multi-
resolution, hybrid spatiotemporal method, Distributed 
Source Coding, Context Adaptive Interpolator
 

1. INTRODUCTION 
 
Compression of encrypted data is necessary in some 
application scenarios. Johnson et al. [1] show that although 
the encryption masks the source and makes the data appear 
to be almost totally random, compression of encrypted data 
(assuming a stream cipher is used) is still possible, as it can 
be treated as a problem of distributed source coding with 
side information available at the decoder by performing 
joint decompression and decryption.  

Suppose the plaintext X is independent and identically 
distributed (i.i.d.), and the encryption function is a stream 
cipher, represented as Y = X  K, where K is the secret key 
and Y is the ciphertext. The encryption operator “ ” is bit-
wise XOR. According to the Slepian-Wolf theorem for 
distributed source coding, given the secret key K as the side 
information at the decoder, the necessary bit rate to 
reconstruct Y is RY  H(Y|K) = H(X K|K) = H(X). Based on 
this idea, the work on i.i.d. source data [1] shows that given 
the secret key at the decoder, the encrypted data can still be 
compressed to the rate of the source entropy. 

In order to apply this technique to images, Schonberg et 
al. [2] introduce a 2-D Markov model to explore the vertical 
and horizontal correlations of images at the decoder and 
achieve good results on binary images. However, our 

previous work [3] shows that 2-D Markov model is 
somewhat too simple to model grayscale images. Instead, it 
would help if the decoder could have partial access to the 
current image such as a lower resolution of it. 

Videos can potentially be more compressible than still 
images because of the high temporal correlations in addition 
to the spatial correlations. Schonberg et al. extend their 2-D 
Markov based source model to videos [4]. They utilize three 
previous decoded frames to estimate the joint distribution 
between the current frame and its predictor, from which the 
2-D Markov model parameters are calculated. This 
technique works well on those encrypted videos with low 
motion; however it can hardly compress the encrypted 
videos with irregular high motion. This is partly due to the 
limitation of their 2-D Markov based source model as 
discussed above. Besides, the joint distribution and the 
prediction from the previous frames are unreliable when 
dealing with videos with irregular high motion. In this 
situation, the current spatial information, if available 
partially, is more reliable than the temporal information.   

Here the temporally or spatially predicted information is 
referred to as the side information. This paper will focus on 
how to generate more reliable side information and how to 
utilize it efficiently. As demonstrated in our previous work 
[3], multi-resolution approach can help to generate the 
spatial side information of the current frame, which is 
expected to effectively compensate for the unreliable 
temporal side information. 

The rest of the paper is organized as follows. In Section 2, 
we briefly review our previous work on compression of 
encrypted images. Section 3 presents the proposed multi-
resolution based hybrid spatiotemporal compression scheme 
for encrypted videos. Experimental results are shown in 
Section 4. Section 5 makes some concluding remarks. 
 

2. OUR PREVIOUS WORK 
 
Our previous work [3] shows that a global 2-D Markov 
model is somewhat too simple to characterize the local 
correlation of images. To address this issue, a multi-
resolution based approach is proposed.  

Before the encoding, pyramidal downsampling is 
performed on the original encrypted image (assuming a 
stream cipher is used so that the spatial location information 
of pixels is preserved). More specifically, four subbands will 
first be generated by downsampling with different offsets on 
the entire encrypted image. After that, the upper-left 
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subband (with offset (0,0)) is downsampled again, to 
generate smaller subbands. This process is repeated until the 
whole image is decomposed into predefined N levels. Then 
the encoding process is applied on these hierarchically 
arranged subbands, i.e., the compression is conducted 
progressively from the highest level (lowest resolution) to 
the lowest level (highest resolution). The decoding is also 
performed resolution by resolution. Once a lower resolution 
image is decoded, it is interpolated to predict a higher 
resolution image which serves as the side information when 
a higher resolution is to be decoded. This process iterates 
until the whole image is decoded. Note that here and in the 
rest of the paper, the decoding process implies joint 
decompression and decryption. 

The experiments in [3] show that it is feasible to derive, 
from the lower resolution image, reliable side information of 
the higher resolution image using a Context Adaptive 
Interpolator (CAI). 

 
3. MULTI-RESOLUTION BASED COMPRESSION OF 

ENCRYPTED VIDEOS 
 
We extend the multi-resolution based approach to 
compression of encrypted video in this section. 
  
3.1. Spatial and Temporal Side Information 
 
3.1.1. Estimation of Spatial Side Information  
Suppose the current frame X(t) is decomposed into N levels  
by downsampling iteratively, which are denoted as X(t)1,… 
X(t)n,…X(t)N. Each level X(t)n is formed by four subbands 
denoted as 00( )nX t , 01( )nX t , 10( )nX t , 11( )nX t  respectively from 
the upper-left to the bottom-right. We also have X(t) = X(t)1 
and X(t)n+1= 00( )nX t  (1  n  N-1). 

Let ( )X t  denote the spatial estimation of X(t), and x(t) be 
the decoded version of X(t). In the process of multi-
resolution based compression, each time before we 
reconstruct x(t)n , the x(t)n+1 ( 00( )nx t ) has already been 
reconstructed. Thus, 00( )nx t  can be used to generate the 
spatial side information 01( )nX t , 10( )nX t , 11( )nX t  by using the 
CAI [3]. More specifically, we first generate the spatial side 
information 11( )nX t  using 00( )nx t . Having 11( )nX t , it is easy to 
do the decoding and reconstruct 11( )nx t . With both 00( )nx t  and 

11( )nx t  further prediction is applied to generate the spatial 
side information 01( )nX t  and 10( )nX t . 

 
3.1.2. Side Information based on Motion Compensated 
Prediction 
Temporal side information can be derived by Motion 
Compensated Prediction (MCP). Given the previous two 
decoded frames x(t-1) and x(t-2), motion vectors (MV) can 
be derived for x(t-1) and used as an estimate of the MVs for 

x(t) which can be used to find ( )X t .Then by downsampling 
( )X t , we can get 00( )NX t , which can be used as side 

information to do the decoding and reconstruct 00( )Nx t  . 
Once 00( )Nx t  is available, we can use it to search for the 

potentially matched blocks in x(t-1) and use the resulting 
MVs to form the temporal side information ( )NX t ( 01( )NX t  ,

10( )NX t , 11( )NX t ). Then through decoding we can reconstruct
01( )Nx t , 10( )Nx t , 11( )Nx t , and together with 00( )Nx t , they form x(t)N 

( 00
1( )Nx t ), with which we can again do block matching in x(t-

1). This process can be performed iteratively, similar to the 
one presented in [5], until it reaches the lowest level, i.e., the 
entire image is reconstructed.   
 
3.1.3. Side Information Integration 
Except the lowest resolution 00( )NX t which only has the 
temporal side information 00( )NX t , every subband has both 
the spatial and temporal side information generated by the 
above prediction algorithms (CAI or multi-resolution MCP). 
Therefore, we can generate more reliable side information 
by integrating the spatial and the temporal side information 
using an adaptive weighting strategy: 

( ) ( ) (1 ) ( )ij ij ij
n n nS t X t X t     (1) 

where (0    1). When =0 or 1, the integration reduces 
to the scenario where only spatial or temporal side 
information is used. 
 
3.2. Proposed Algorithms 
 
In addition to the side information, another important issue 
is how to estimate the distribution of the prediction error 
P( ( )ij

nS t - ( )ij
nX t ). We assume that P follows a Laplace 

distribution, that is P~L( ,b) where u and b are location and 
scale parameters. Since the current source data ( )ij

nX t  is not 
available, we can estimate the residual distribution P using 
different strategies as discussed below. In the following 
schemes ,both u and b are calculated locally for each pixel 
in a 5 5 neighbourhood [3]. 
 
3.2.1. Spatial Method 
This is a simple extension of our previous work on images 
[3]. Each frame of the video can be treated as a single image 
and thus can be encoded separately, where only spatial side 
information is used ( =1 in Eq.(1)). The estimation of the 
residual distribution P is calculated as following: 

1 1( ( ) ( ) ) ( ( ) ( ) )ij ij ij ij
n n n nP S t X t P S t x t      (2) 

Where 1  n  N-1. Note that the lowest resolution 
00( )NX t  (X(t)N+1) is not encoded. 

 
3.2.2. Temporal Method 
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This algorithm only exploits the temporal side information 
( =0 in Eq.(1)). The residual distribution P is estimated as 
the distribution of the corresponding subbands in the 
previous frame, i.e., : 

( ( ) ( ) ) ( ( 1) ( 1) )ij ij ij ij
n n n nP S t X t P S t x t   (3) 

Where1  n  N, and t 4. Note that the first three frames 
are not encoded. 

 
3.2.3. Hybrid Spatiotemporal Method 
Usually, mean square error (MSE) is used to evaluate how 
accurate or reliable a prediction is. Let MSEp and MSEt be 
the MSE value of the spatial and the temporal side 
information respectively.  They can be used to derive the 
weight in Eq.(1):   

t

p t

MSE
MSE MSE

           (4) 

However, the MSE values of the side information of the 
current subband being decoded are not available.  Similar to 
the way we estimate P , we can find an estimate of MSEp 
and MSEt to derive . We explore three modes below.  

Mode I: Determination based on co-located block 
The weight is estimated based on the co-located blocks in 

the previous frame. Note that the co-located block in the 
previous frame has its own spatial and temporal side 
information, and their respective MSEp and MSEt can be 
calculated and used in Eq.(4) to estimate the weight  for 
the current block. P can be easily derived by Eq. (3). 

Mode II: Determination based on the lower resolution 
The weight is estimated based on the blocks in the lower 

resolution of the current frame. The block in the lower 
resolution has its own MSEp and MSEt , which are used to 
estimate  in Eq.(4). P can be easily derived by Eq(2).  

Mode III: Determination based on the motion 
compensated previous blocks 

The motion compensated block is the block in the 
previous frame which best matches the block in the current 
frame. Note that the motion compensated block has its own 
MSEp and MSEt which can be used to estimate  for the 
current block. P is the residual distribution of the motion 
compensated blocks. 

TABLE I 
DATA RATE (OUTPUT BITS PER SOURCE BIT)  USING DIFFERENT MODES 

Modes Foreman Football Garden 
Mode I 0.5161 0.6738 0.6337 
Mode II 0.5436 0.6856 0.6627 
Mode III 0.5190 0.6690 0.6363 

From the test results in Table I, we can see that Mode I 
and III have similar performance and are both better than 
Mode II, but mode III is more suitable for some videos with 
high motion (e.g., football) because it explores the similarity 
based on the moving object rather than the pixel location. So 
Mode III is chosen as our hybrid spatiotemporal method, 
which is used to generate the results in Section 4.  

The complete algorithm of decoding the current frame X(t) 
is summarized here: 

1. Get MCP of X(t) from x(t-1) and x(t-2), derive 00( )NX t
and decode the lowest resolution. Set n = N. 

2. Using the decoded data 00( )nx t  , derive spatial and 

temporal side information ( )nX t  and ( )nX t  . 
3. Find motion compensated blocks of 00( )nx t  ,  determine 

the estimated weight , calculate P and derive the side 
information  S(t)n. 

4. Perform the joint decompression and decryption. 
5. n = n -1 and  if n > 0, go to step 2. 
This is done when t 3, until the whole video clip is 

decoded, while the first two frames are not encoded. 
 

4. SIMULATIONS 
 
In the following experiments, the channel coding tool we 
use is the Low Density Parity Code (LDPC) [6]. The test 
videos are ‘foreman.cif’, ‘football.cif’ and ‘garden.cif’. 
Table II compares the performance of different approaches. 
The experiment is done on the first twelve frames of each 
video clip to be comparable to the experimental settings in 
[7]. The data rates in the table (including the directly quoted 
numerical results from [7]) show that among our three 
methods, the hybrid spatiotemporal method performs the 
best, and significantly outperforms the scheme in [7]. 

TABLE II 
PERFORMANCE OF DIFFERENT ALGORITHMS  

Output bit per source bit Foreman Football Garden 
Spatial Method Only 0.6003 0.7167 0.7646 
Temporal Method Only 0.5579 0.7585 0.6493 
Hybrid Spatiotemporal 
Method 

0.5190 0.6690 0.6363 

 Scheme in [7] 0.6700 0.9283 0.8236 
Figures 1, 2, 3 show the data rate frame by frame. The 

spatial method performs more stable than the other two 
methods. Obviously, the hybrid spatiotemporal method 
always has the best performance. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Comparing Figure 2 to Figure 3, we can see that for 
‘Foreman’, the temporal method performs better than the 

Fig.1.  Data rates by frames for ‘Foreman’ 
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spatial method since it is a video with low and stable motion 
and thus the motion prediction is more reliable. But for 
‘Football’, the spatial method outperforms the temporal 
method since it is a video with irregular high motion and 
thus the spatial side information is relatively more reliable.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

For ‘Garden’, the performance gap between the spatial 
method and the other two methods is quite large. That’s 
probably because there are too many irregular edges and 
textures within the frame which spoil the spatial prediction 

results. It is noticed that the hybrid spatiotemporal method 
performs similarly to the purely temporal method, which 
indicates that the integration process is inclined to the 
temporal side information. 

Figure 4 shows the data rate of the spatiotemporal method 
for ‘Foreman’ by different bitplanes. Circles represent the 
average data rate over the frame 3-12 on different bitplanes, 
and diamonds represent the maximal value across these 
frames while squares show the minimum. The  most 
significant bitplanes (MSBs)  can be compressed efficiently. 
The highest two bitplanes can hardly be compressed due to 
the randomness. This result is also much better than the 
results shown in [2]. We also observe that if the two least 
significant bitplanes are left unencoded and sent first to help 
the decoding of more significant bitplanes, the overall 
compression will be slightly more efficient. 
 

5. CONCLUSIONS 
 
A novel lossless compression method for encrypted video 
based on a multi-resolution approach is proposed in this 
paper. The multi-resolution approach makes it possible to 
have access to part of the spatial source data to generate 
more reliable spatial and temporal side information. The 
proposed hybrid spatiotemporal method exploits both the 
spatial and the temporal side information so that it is more 
adaptive than other methods. Our experiments show that it 
significantly outperforms other techniques. 
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Fig.2.  Data rates by frames for ‘Football’ 

Fig.3.  Data rates by frames for ‘Garden’ 

 
Fig.4.  Data rates by bitplanes for ‘Foreman’ 
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