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ABSTRACT

We introduce a new exemplar-based inpainting algorithm that

represents the region to be inpainted as a sparse linear combi-

nation of example blocks, extracted from the image being in-

painted or an external training image set. This method is con-

ceptually simple, being computed by minimization of a sim-

ple functional, and avoids the complexity of correctly order-

ing the filling in of missing regions of other exemplar-based

methods. Initial performance comparisons on small inpaint-

ing regions indicate that this method provides similar or better

performance than other recent methods.

Index Terms— Image restoration, Inpainting, Exemplar

1. INTRODUCTION

Exemplar based methods are becoming increasingly popular

for problems such as denoising [1, 2], superresolution [3, 4,

5], texture synthesis [6], and inpainting [7, 8]. The com-

mon theme of these methods is the use of a set of actual im-

age blocks, extracted either from the image being restored,

or from a separate training set of representative images, as

an image model. In the case of inpainting, the approach is

usually to progressively replace missing regions with the best

matching parts of the same image, carefully choosing the or-

der in which the missing region is filled to minimize artifacts

[8]. Instead, we propose an inpainting method that represents

missing regions as sparse linear combinations of other regions

in the same image (in contrast to [9], in which sparse repre-

sentations on standard dictionaries, such as wavelets, are em-

ployed), computed by minimizing a simple functional.

2. SPARSE LINEAR COMBINATIONS OF
EXEMPLARS

The image model of the proposed approach is that each block

of the restored image should be a sparse linear combination

of other image blocks, either from known regions (i.e. not in-

tersecting the inpainting region) of the image being restored,
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or from a separate training image set. These image blocks

are overlapped to reduce blocking artifacts, and, more impor-

tantly, to enable information from the exterior of the inpaint-

ing region to propagate to blocks entirely within the interior,

as illustrated in Fig. 1.

Tiled blocks Overlapping blocks

Known region

Inpainting region

Known region

Fig. 1. Image blocks which cross the boundary of the inpaint-

ing region can be chosen as the best match to the image model

subject to the constraint that they match the known image pix-

els outside the inpainting region, but in a tiled block structure,

blocks interior to the inpainting region are unconstrained. In

an overlapping block structure, an additional constraint on the

mismatch between overlapping blocks allows the constraint

from the known pixels to propagate to interior blocks.

Within this framework, the solution is computed by mini-

mizing a global functional which

1. penalizes the �1 norm of the linear combination coeffi-

cients to encourage a sparse, low complexity, solution,

2. constrains (or penalizes) the mismatch between solu-

tion blocks and known pixels, and

3. constrains (or penalizes) the mismatch between over-

lapping parts of different solution blocks.

In order to discuss this approach in more detail, we need to

establish some notation. Denote the image to be inpainted

by vector s, the inpainting region mask by r, and the in-

painted result by u. To reduce the complexity of computing

the mismatch between overlapping parts of different blocks,

the blocks are arranged in indexed grids, with the overlap be-

ing produced by an offset of the entire grid, as indicated in
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Fig. 2. This structure allows the total block overlap mismatch

to be computed as the mismatch between the grids, without

having to track overlapping parts of individual blocks. Each

block is indexed by the number of its grid and its number

within that grid, block sk,l being the lth block in grid k.

s0,0 s0,1 s0,2

s0,m

s1,0 s1,1 s1,2

s1,n

Fig. 2. Structure of overlapping block grids.

Denote the operator that extracts block k, l from an image

as Bk,l and the operator that “inserts” the same block back

into the image as BT
k,l, and make the definitions

R = diag(r) rk,l = Bk,lr

Rk,l = diag(rk,l) sk,l = Rk,lBk,ls .

We define Φk,l and αk,l as the dictionary and coefficients

respectively for block k, l. The dictionary is indexed because

it is reasonable (and consistent with other exemplar-based im-

age restoration algorithms) to choose a distinct dictionary for

each block by finding similar blocks within the same image,

or within an external training set of blocks extracted from

similar images. For the initial experiments reported here,

however, a simpler approach is adopted in which all blocks

share a common dictionary, constructed from all complete

(i.e. not intersecting the inpainting region) blocks within a

specified training region in the image to be inpainted. This

approach remains effective since finding the linear combina-

tion with minimum �1 norm has the effect of selecting a rep-

resentation in terms of similar blocks, when possible.

Now, for each block uk,l = Φk,lαk,l, we wish to mini-

mize or constrain (either equal to zero, or less than some up-

per bound) the following terms:

1. Solution sparsity ‖αk,l‖1
2. Mismatch with known pixels in sk,l

‖Rk,lΦk,lαk,l −Rk,lBk,ls‖2
3. Mismatch in overlap with block grid n

‖Φk,lαk,l −Bk,l

∑

m

BT
n,mΦn,mαn,m‖2 n �= k

Indexed symbols are combined over all blocks to give the def-

initions

α =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

α0,0

α0,1

...

α1,0

α1,1

...

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

s̃ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

s0,0

s0,1

...

s1,0

s1,1

...

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

R =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

R0,0 0 0 0 0 · · ·
0 R0,1 0 0 0 · · ·
...

...
. . .

...
... · · ·

0 0 0 R1,0 0 · · ·
0 0 0 0 R1,1 · · ·
...

...
...

...
...

. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

C =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · BT
1,0 BT

1,1 · · ·
0 0 · · · BT

1,0 BT
1,1 · · ·

...
...

...
...

...
...

BT
0,0 BT

0,1 · · · 0 0 · · ·
BT

0,0 BT
0,1 · · · 0 0 · · ·

...
...

...
...

...
...

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Matrices Φ and B have the same diagonal block structure (in

terms of their indexed components) as R. Note that these

definitions have been simplified by assuming there are only

two block grids, but in principle a larger number is possible,

and may well enhance performance at the expense of greater

computational cost.

Our global penalties/constraints may then be written as

1. Solution sparsity ‖α‖1
2. Mismatch with known pixels in s

‖RΦα− s̃‖2
3. Mismatch between overlapping block grids

‖(I −BC)Φα‖2
The two most obvious ways of combining these distinct goals

are the unconstrained problem

min {‖α‖1 + γ0‖RΦα− s̃‖2 + γ1‖(I −BC)Φα‖2}
with weights γ0 and γ1, and the constrained problem

min ‖α‖1 s.t. ‖RΦα−s̃‖2 ≤ σ0 and ‖(I−BC)Φα‖2 ≤ σ1

with upper bounds σ0 and σ1. For the preliminary experi-

ments reported here we concentrate on the latter problem, but

in the absence of an efficient solver for this exact problem, we

define

A =
(

γ0RΦ
γ1(I −BC)Φ

)
b =

(
γ0s̃
0

)
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and solve the related problem

min ‖α‖1 such that ‖Aα− b‖ ≤ σ ,

using SPGL1 [10, 11]. The parameters γ0 and γ1 balance

the influences of the two “mismatch” components of the con-

straint, and σ determines the maximum of this combined

constraint. The final restored image (or image region, since

the computational domain can be restricted to a small re-

gion around the inpainting region) is obtained by averaging

the overlapping block grids to obtain a single value for each

image pixel.

3. RESULTS

We illustrate the performance of the proposed method using

two small test regions extracted from the well-known Lena

and Barbara test images, and compare performance with the

Field of Experts method [12] and the method of Criminisi et
al. [8], computed using the publicly available software [13]

and [14] respectively. Results for the first region, extracted

from the hat in the Lena image, are displayed in Figure 3,

and the results for the second, extracted from the textured

pants in the Barbara image, are displayed in Figure 4, and

a comparison for SNR values is displayed in Table 1. For

the results presented here, we chose parameters empirically

to be γ0 = 1.00, γ1 = 0.01, and σ = 40.0. In each case,

a subregion of the image was extracted for training (i.e. as

a source for the image blocks populating the dictionary), and

the smaller subregion actually displayed was tiled by the over-

lapping block grids and used for minimization of the func-

tional. When evaluating the performance of the competing

algorithms, these algorithms were presented with the larger

(training) subregion for a fair comparison.

Image FoE [12] Criminisi et al. [8] Proposed

Lena 15.4dB 15.6dB 17.8dB

Barbara 6.2dB 2.3dB 8.1dB

Table 1. Comparison of inpainting SNR values on test images

displayed in Figures 3 and 4.

In terms of subjective image quality, the FoE reconstruc-

tion (which, in its defense, was perhaps designed for narrower

inpainting regions) is noticeably inferior to the other two on

the Lena image, and very much inferior on the Barbara im-

age. (Despite the significant subjective quality difference on

the second example, the FoE SNR is significantly higher than

that of the method of Criminisi et al., illustrating the limited

utility of SNR as an objective quality measure in this context.)

The proposed method provides slightly better subjective im-

age quality than that of Criminisi et al. for the Lena image

(more clearly visible on an image display than in the printed

examples), and a more significant performance advantage for

the Barbara image. For these comparisons, runs times were

similar to those of the FoE method, and 2-3 orders of magni-

tude longer than the method of Criminisi et al..

4. CONCLUSIONS

The simple initial implementation of the proposed inpainting

methods exhibits high computational cost, but delivers com-

parable or better results than the significantly more conceptu-

ally complex methods with which it was compared, providing

evidence of the potential of the proposed approach. A number

of significant improvements remain to be considered, includ-

ing application of a more appropriate solver for the minimiza-

tion problem (particularly important given the computational

expense), and selection of optimized dictionaries for each so-

lution block.
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Fig. 4. Inpainting comparison on a subimage cropped from the Barbara image. The region to be inpainted is 8 × 30 pixels in

size. Images have been rotated by 90◦ to save space.
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