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ABSTRACT
A broad range of signal recovery problems can be abstracted

into the problem of minimizing the sum of several convex

functions in a Hilbert space. We propose a proximal decom-

position algorithm which, under mild conditions, provides a

solution to such a problem. A significant improvement over

the methods currently in use in the area of signal recovery is

that it is not limited to two nondifferentiable functions. An

application to image restoration is demonstrated.

Index Terms— convex optimization methods, inverse

problems, parallel algorithm, signal restoration, variational

methods, wavelet transforms.

1. INTRODUCTION

A broad range of signal recovery problems can be formulated

as decomposed optimization problems of the form

minimize
x∈H

m∑
i=1

fi(x), (1.1)

where (H, ‖ · ‖) is a real Hilbert space and (fi)1≤i≤m are

proper lower semicontinuous convex functions from H to

]−∞, +∞]. In this variational formulation, each potential

function fi may represent a prior constraint on the ideal sig-

nal x or on the data acquisition model. The purpose of this

paper is to propose a decomposition method that, under rather

general conditions, will provide solutions to (1.1).

To place our investigation in perspective, let us review

some important special cases of (1.1) for which globally con-

vergent numerical methods are available. If the functions

(fi)1≤i≤m are the indicator functions (see (2.1)) of convex

constraint sets (Ci)1≤i≤m, (1.1) reduces to the convex feasi-

bility problem [16], which can be solved by projection tech-

niques [6]. When the sets (Ci)1≤i≤m are based on inaccu-

rate information, the feasibility set
⋂m

i=1 Ci may be empty.

An approximate solution can be obtained by setting, for ev-

ery i ∈ {1, . . . ,m}, fi = ωid
2
Ci

, where dCi
is the distance

function to Ci (see Section 2) and where ωi ∈ ]0, 1] [5];
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for finite-dimensional variants based on Bregman distances,

see [2]. If (fi)1≤i≤m−1 are the indicator functions of con-

vex sets (Ci)1≤i≤m−1 and fm : x �→ ‖x − r‖2 for some

r ∈ H, then (1.1) reduces to a best approximation problem

[7]. In [11], the special instance of (1.1) in which m = 2 and

f2 is Lipschitz-differentiable on H is shown to cover a vari-

ety of seemingly unrelated signal recovery formulations, and

a forward-backward splitting algorithm is proposed to solve

this problem. This 2-function framework can be extended

to (1.1) under the restriction that (fi)2≤i≤m be Lipschitz-

differentiable. Finally, the setting of [9] corresponds to m =
2 in (1.1), without any differentiability assumption. The algo-

rithm adopted in [9] is based on the Douglas-Rachford split-

ting method, namely

⌊
yn+ 1

2
= proxγf2

yn + an

yn+1 = yn + λn

(
proxγf1

(
2yn+ 1

2
− yn

)
+ bn − yn+ 1

2

)
,

(1.2)

where λn ∈ ]0, 2[, γ > 0, and an and bn model tolerances

in the implementation of the proximity operators (see (2.2)).

Under suitable assumptions, (yn)n∈N converges weakly to a

point y ∈ H and proxγf2
y minimizes f1 + f2 [9].

Some important scenarios are not covered by the above

settings, namely the formulations of type (1.1) with three or

more potentials, at least two of which are non differentiable,

e.g., �1 norm, total variation, distance functions, max func-

tions, support functions, etc. Our main objective is to propose

an algorithm to overcome this limitation. In Section 2, we

provide some background on convex analysis and proximity

operators. In Section 3, we introduce our algorithm and pro-

vide conditions for its convergence. An application to image

restoration is detailed in Section 4.

2. NOTATION AND BACKGROUND

Let C be a nonempty convex subset of H. The indicator func-

tion of C is

ιC : x �→
{

0, if x ∈ C;
+∞, if x /∈ C,

(2.1)
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and its distance function is dC : H → [0,+∞[ : x �→
infy∈C ‖x − y‖. In addition, if C is closed, the projec-

tion of a point x in H onto C is the unique point PCx in C
such that ‖x − PCx‖ = dC(x).

The domain of a function f : H → ]−∞, +∞] is dom f ={
x ∈ H ∣∣ f(x) < +∞}

. The class of lower semicontinuous

convex functions from H to ]−∞,+∞] which are proper

(i.e., with nonempty domain) is denoted by Γ0(H). The

proximity operator of a function f ∈ Γ0(H) is the operator

proxf : H → H which uniquely maps every x ∈ H to

proxf x = argmin
y∈H

f(y) +
1
2
‖x − y‖2. (2.2)

Closed-form formulas for various proximity operators are

provided in [4, 9, 11]. The following two properties will be

required.

Proposition 2.1 [9, Proposition 11] Let G be a real Hilbert
space, let f ∈ Γ0(G), and let L : H → G be a bounded linear
operator with closed range ranL and such that L ◦ L∗ =
κ Id , for some κ ∈ ]0,+∞[. Suppose that 0 ∈ int(dom f −
ranL). Then f ◦ L ∈ Γ0(H) and proxf◦L = Id +κ−1L∗ ◦
(proxκf − Id ) ◦ L.

Proposition 2.2 [10] Let (G, ‖ · ‖) be a real Hilbert space,
let L : H → G be linear and bounded, let z ∈ G, let γ ∈
]0,+∞[, and set f = γ‖L · −z‖2/2. Then f ∈ Γ0(H) and

(∀x ∈ H) proxf x = (Id +γL∗L)−1(x + γL∗z). (2.3)

3. ALGORITHM AND CONVERGENCE

We propose the following proximal method to solve (1.1).

Algorithm 3.1 For every i ∈ {1, . . . , m}, let (ai,n)n∈N be

a sequence in H. A sequence (xn)n∈N is generated by the

following routine.

Initialization⎢⎢⎢⎢⎢⎢⎢⎣
γ ∈ ]0,+∞[
(ωi)1≤i≤m ∈ ]0, 1]m satisfy

∑m
i=1 ωi = 1

(yi,0)1≤i≤m ∈ Hm

x0 =
∑m

i=1 ωiyi,0

For n = 0, 1, . . .⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

For i = 1, . . . , m⌊
pi,n = proxγfi/ωi

yi,n + ai,n

pn =
∑m

i=1 ωipi,n

λn ∈ ]0, 2[

For i = 1, . . . , m⌊
yi,n+1 = yi,n + λn

(
2pn − xn − pi,n

)
xn+1 = xn + λn(pn − xn).

(3.1)

In this splitting algorithm, each function fi is used sep-

arately by means of its own proximity operator. Thus, Al-

gorithm 3.1 has a parallel structure in that, at iteration n, the

proximal vectors (pi,n)1≤i≤m, as well as the auxiliary vectors

(yi,n)1≤i≤m, can be computed simultaneously. Another fea-

ture of the algorithm is that some error ai,n is tolerated in the

computation of the ith proximity operator. Its convergence is

secured by the following result.

Theorem 3.2 [10] Let G be the set of solutions to (1.1) and
let (xn)n∈N be a sequence generated by Algorithm 3.1 under
the following assumptions.

(i) lim
‖x‖→+∞

f1(x) + · · · + fm(x) = +∞.

(ii) dom f1 ∩
⋂m

i=2 int dom fi 
= ∅.

(iii)
∑

n∈N
λn(2 − λn) = +∞.

(iv) (∀i ∈ {1, . . . ,m}) ∑
n∈N

λn‖ai,n‖ < +∞.

Then G 
= ∅ and (xn)n∈N converges weakly to a point in G.

Remark 3.3

• If H is finite-dimensional, condition (ii) can be replaced

by
⋂m

i=1 ri dom fi 
= ∅, where ri denotes the relative

interior [10].

• When m = 2, Algorithm 3.1 does not revert to the stan-

dard Douglas-Rachford iteration (1.2). Actually, even

in this case, it seems better to use the former to the ex-

tent that, as seen in Theorem 3.2, it produces directly

a sequence that converges weakly to a minimizer of

f1 + f2, whereas the latter does not.

• A practical limitation of the algorithm is that one

should be able to implement, to within some control-

lable error, the proximity operators of each function.

4. APPLICATION TO IMAGE RESTORATION

In image recovery, variational formulations involving total

variation [3, 14] or sparsity promoting potentials [1, 8, 12, 13]

are popular. The objective of the present experiment is to

show that it is possible to employ more sophisticated, hybrid

potentials.

In order to simplify our presentation, we place our-

selves in the Hilbert space G of periodic discrete images

y = (ηk,l)(k,l)∈Z2 with horizontal and vertical periods equal

to N (N = 512), endowed with the standard Euclidean

norm. As usual, images of size N × N are viewed as el-

ements of this space through periodization. The original

8-bit satellite image y ∈ G displayed in Figure 1 is de-

graded through the linear model z = Ly + w, where L is

the two-dimensional periodic convolution operator with a
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7 × 7 uniform kernel, and w is a realization of a periodic

zero-mean white Gaussian noise. The resulting degraded

image z ∈ G is shown in Figure 2. The blurred image-

to-noise ratio is 20 log10(‖Ly‖/‖w‖) = 20.71 dB and the

relative quadratic error with respect to the original image is

20 log10(‖z − y‖/‖y‖) = −12.02 dB.

In the spirit of a number of recent investigations (see [4]

and the references therein), we use a tight frame representa-

tion of the images under consideration. This representation

is defined through a synthesis operator F ∗, which is a lin-

ear operator from H = R
K to G (with K ≥ N2) such that

F ∗ ◦ F = κ Id , for some κ ∈ ]0, +∞[. Thus, the original

image can be written as y = F ∗x, where x ∈ H is a vector

of frame coefficients to be estimated. The rationale behind

this approach is that, by appropriately choosing the frame, a

sparse representation x of y can be achieved.

The restoration problem is posed in the frame coefficient

space H. We use the constraint set imposing the range of the

pixel values of the original image y, namely

C =
{
x ∈ H ∣∣ F ∗x ∈ D

}
, (4.1)

where

D =
{
y ∈ G ∣∣ (∀(k, l) ∈ {0, . . . , N − 1}2) ηk,l ∈ [0, 255]

}
,

(4.2)

as well as three potentials. The first potential is the standard

least-squares data fidelity term x �→ ‖LF ∗x − z‖2. The sec-

ond potential is the �1 norm, which aims at promoting a sparse

frame representation [4, 12, 15]. Finally, the third potential is

the discrete total variation tv, which aims at preserving piece-

wise smooth areas and sharp edges [3, 14]. Using the notation

(ηk,l)	(k,l)∈Z2 = (ηl,k)(k,l)∈Z2 , the discrete total variation of

y ∈ G is defined as

tv(y) =
N−1∑
k=0

N−1∑
l=0

	k,l

(∇1y, (∇1(y	))	
)
, (4.3)

where ∇1 : G → R
N×N is a discrete vertical gradient opera-

tor and where, for every k and l in {0, . . . , N − 1},

	k,l :
([

νa,b

]
0≤a,b≤N−1

,
[
ν̃a,b

]
0≤a,b≤N−1

)
�→

√
|νk,l|2 + |ν̃k,l|2. (4.4)

A common choice for the gradient operator is ∇1 : y �→
[ηk+1,l − ηk,l]0≤k,l≤N−1. As is customary in image process-

ing, we adopt here a horizontally smoothed version of this

operator, namely,

∇1 : y �→ 1
2
[
ηk+1,l+1 − ηk,l+1 + ηk+1,l − ηk,l

]
0≤k,l≤N−1

.

(4.5)

We thus arrive at a variational formulation of the form (1.1),

namely

minimize
x∈H

ιC(x) + ‖LF ∗x − z‖2 + α‖x‖�1 + βtv(F ∗x),

(4.6)

where α and β are in ]0,+∞[. We are not aware of an effi-

cient splitting method that produces sequences with guaran-

teed convergence to a solution to this problem. However, we

shall see that it can be solved by the proposed method. Since

C is bounded, condition (i) in Theorem 3.2 is satisfied. In ad-

dition, it is clear that condition (ii) in Theorem 3.2 also holds.

Indeed, all the potentials in (4.6) have full domain, except ιC .

Fig. 1. Original image.

Fig. 2. Degraded image.

Although (4.6) assumes the form of (1.1), it is not directly

exploitable by Algorithm 3.1 because the proximity operator

of tv ◦F ∗ cannot be computed explicitly. To circumvent this

numerical hurdle, the total variation potential (4.3) is split in

four terms and (4.6) is rewritten as

minimize
x∈C

‖LF ∗x− z‖2 + α‖x‖�1 + β

3∑
i=0

tvi(F ∗x) (4.7)
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Fig. 3. Image restored by (4.7), using 350 iterations of Algo-

rithm 3.1 with γ = 150.

where, for every q and r in {0, 1} and every y ∈ G,

tvq+2r(y) =
N/2−1∑

k=0

N/2−1∑
l=0

	2k+q,2l+r

(∇1y, (∇1(y	))	
)
.

(4.8)

Problem (4.7) is a specialization of (1.1), in which m = 7,

f1 = ιC , f2 = ‖LF ∗ · −z‖2, f3 = α‖ · ‖�1 , and fi+4 =
β tvi ◦F ∗ for i ∈ {0, 1, 2, 3}. Let us stress that only the func-

tion f2 is differentiable. To implement Algorithm 3.1, we

need the expressions of the proximity operators of (fi)1≤i≤7.

The proximity operator of f1 can be calculated by first ob-

serving that the projection onto the set D of (4.2) is explicit,

and by then applying Proposition 2.1. On the other hand, the

proximity operator of f2 can be derived from Proposition 2.2

using a frequency domain implementation, and by again in-

voking Proposition 2.1. Next, the proximity operator of f3

can be found in [11, Example 2.20]. Finally, the operators

(proxfi
)4≤i≤7 are provided by [10, Proposition 4.1].

In (4.7), we employ a tight frame (κ = 4) resulting from

the concatenation of four shifted separable dyadic orthonor-

mal wavelet decompositions carried out over 4 resolution lev-

els. The shift parameters are (0, 0), (1, 0), (0, 1), and (1, 1).
In addition, symlet filters of length 8 are used. The parame-

ters α and β have been adjusted so as to minimize the error

with respect to the original image y. The restored image we

obtain is displayed in Figure 3. It achieves a relative mean-

square error with respect to y of −14.82 dB. For comparison,

the result obtained without the total variation potential in (4.7)

yields an error of −14.06 dB, and the result obtained without

the �1 potential in (4.7) yields an error of −13.70 dB. This

shows the advantage of combining an �1 potential and a total

variation potential.
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