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ABSTRACT
In the recent years, denoising based on the spatially adap-

tive algorithms that employ anisotropic adaption have been

developed. These methods are able to match to the local

statistics, preserve the edges and truly remove the noise

from the texture of the images. On the other hand, a huge

proportion of image enhancement methods are implemented in

the sparse domains (e.g., wavelets, curvelets, contourlets and

steerable pyramid decomposition) due to impressive properties

of these transforms such as heavy-tailed nature of marginal

distribution, locality and multiresolution. In this paper we try

to establish a relation between two mentioned approaches by

estimating the local variances of steerable pyramid coefficients

using a shape-adaptive window.

Index Terms— steerable pyramid decomposition, shape-

adaptive window, image enhancement

I. INTRODUCTION
In 1994, Donoho and Johstone [1] introduced a new method

for signal denoising in wavelet domain. From that time till

now, many researchers have extended the idea of wavelet-

based denoising [2]–[6] due to the impressive properties

of wavelets such as heavy-tailed nature, multiresolution and

locality [7]. However, wavelets have been designed for 1-

D signals and 2-D wavelets that are tensor products of 1-D

wavelets are not able to preserve the optimality of wavelet

transform for signal processing. In this base, an effort has

been done in the last years to design suitable transforms for

multidimensional data processing [8]–[10]. Unlike to wavelet

transform that is based on the point singularities, the optimal

sparse transforms for images must be able to detect the line

and curve singularities [10].

For example, the steerable pyramid decomposition is a

multiscale and multiorientation transform that operates in

two stages, i.e., low- and high-pass filtering and dividing

the lowpass band to the oriented bandpass subbands. In [3],

the Bayesian least squares estimator is used based on a

Gaussian scale mixture prior model for adjacent coefficients

of steerable pyramid decomposition (BLS-GSM method). The

authors could obtain one of the state-of-the-art denoising

method due to using an appropriate transform and estimator.

Comparing between denoising results in wavelet domain and

steerable pyramid decomposition using a unique estimator,

it can be concluded that choosing appropriate transform for

image denoising (such as steerable pyramid decomposition)

has a main effect to improve the performance of noise reduc-

tion procedure. So, a main class of noise reduction methods

have been concentrated to improve the properties of proposed

transforms according to the quantitative and qualitative criteria

of optimal image processing [11]–[16].

In the other hand, many researcher have been extended the

idea of spatially adaptive denoising algorithm proposed by Lee

[17] based on locally estimation of variance. In this base, the

local variances of coefficients in the sparse domains can be

estimated from a collection of coefficients at nearby positions,

scales, and orientations [18]–[24]. The initial works in this

class of denoising methods employ an isotropic window for

each coefficient, but during the last years it has been shown

that exploiting the anisotropic window impressively improves

the denoising results both visually and in L2 norm terms [22]–

[24]. The main reason of this improvement is that the local

features in the edges of images are not isotropic and so can be

better modeled in a shape-adaptive window selection manner.

In this paper, we are try to benefit from the advantages of the

two denoising classes described in the last two paragraphes.

On one hand, we employ the steerable pyramid decomposition

(that is one of the best oriented transform that is usually

superior from other sparse transforms such as wavelets,

curvelets and contourlets). On the other hand, we implement

the denoising process in the steerable pyramid domain using

an appropriate shape adaptive algorithm based on obtaining an

anisotropic window for each pixel providing that the obtained

data in each window have enough smoothness. Finally, to

recover the corrupted data, we use the soft threshold function

in each window that its threshold value is obtained using

maximum a posteriori (MAP) criterion.

This paper is organized as follows. In Section II, we explain

about proposed algorithm for discovering the appropriate

anisotropic window for each data. In Section III, the proposed

soft thresholding method in the steerable pyramid domain is

described and in this sense, we clarify how the local variance

is estimated. In Section IV, we conclude our new shape-

adaptive denoising method and evaluate its performance by

comparing the simulation results with other methods. Finally,

we conclude this paper and suggest some additional works

and next extension in Section V.

II. SHAPE ADAPTIVE WINDOW SELECTION

In [25], a new image denoising is introduced that proposes

an anisotropic window around each pixel of image and obtains
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the denoised pixel just by using the located data in the window.

Comparing with the denoising methods that are based on

proposing isotropic window around each pixel (e.g., [18]–

[21]), the proposed method in [25] is able to segment the

image to rather smoothed regions before denoising due to

anisotropic window selection that leads to improvement of

denoising results. To select the anisotropic window, the linear

directional filters gh,θ that are obtained using local polynomial

approximation (LPA) are employed. The θ indicates the direc-

tion of filter that is a member of countable set {θ1, θ2, ..., θL},

where L is the number of directions (e.g., for L = 8 the set is

{0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦}). For each θ, the

length of proposed window is selected from the countable and

increasing set {h1, h2, ..., hJ}. So, for the noisy observation

y(k) where the k indicates kth pixel, we would have the

following estimate

xest
h,θ(k) = gh,θ(k) ∗ y(k) (1)

To estimate the appropriate value of h for each proposed θ,

the nonlinear intersection of confidence intervals (ICI) rule is

employed. For this reason, the estimated h that we indicate it

with h+ is a function of θ and k index and is the largest h
from the h1 < h2 < ... < hJ provided that the estimated data

using h+ doesn’t have noticeable difference with the estimated

data with smaller h’s. (Note that the larger amount of h leads

to the low-pass filter with smaller cut-off frequency and so

just low frequencies remain in the output of the filter.)

To obtain h+(k, θ), the following confidence intervals are

defined:

Cs = [xest
hs,θ

(k)−Rσxest
hs,θ

(k), x
est
hs,θ

(k) + Rσxest
hs,θ

(k)] (2)

where R is the smoothing parameter (the larger amount of R

produces the smoother images) and σxest
hs,θ

shows the variance

of xest
hs,θ

and obtains using (1) as follows:

σ2
xest

hs,θ

=

∫
Pxest

hs,θ

(f)df =

∫
Py(f)Gh,θ(f)df (3)

where P (.) is the power spectral density function and Gh,θ(f)
is the fourier transform of gh,θ(k). For a white random

process, (3) is simplified to:

σ2
xest

hs,θ

=

∫
σ2Gh,θ(f)df = σ2

∑
g2

h,θ(k) (4)

where σ2 is estimated as follows [25]:

σ2 = median|y
s − ys+1

0.6745
√

2
| (5)

and ys (s starts from 1 and increases to the last but one index)

is the column-wise components of observation y(k).

According to the ICI rule, Ds is defined using the following

formula:

Ds =

s⋂
i=1

Ci (6)

The largest s that leads to an unempty value is called s+ and

so h+(k, θ) is obtained using hs+ :

h+(k, θ) = hs+ (7)

III. THRESHOLDING IN THE STEERABLE
PYRAMID DOMAIN

Up to now, many denoising methods in sparse domains have

been proposed [1]–[13]. The proposed transform plays a key

role in transform-based denoising procedure. As explained in

the introduction, the steerable pyramid decomposition is one

of the best multiscale transforms for image processing that

divides the input image to the subbands based on angular

and radial decompositions. Initially, the image is separated

into low- and high-pass subbands. The lowpass subband is

then divided into a set of oriented bandpass subbands and a

lowpass subband. This lowpass subband is subsampled by a

factor of 2 and this procedure is continued. In the following we

concentrate to the denoising in the steerable pyramid domain

due to its impressive properties for image processing.

A main group of transformed denoising methods is based

on the Bayesian approach. The Bayesian approach is an

estimation method that obtains the data by minimizing an

appropriate distance norm of the desired and estimated data

(or maximizing the similarity between them). For example, the

L2 norm and 0/1 norm produces maximum a posteriori (MAP)

and minimum mean squared error (MMSE) estimators respec-

tively. For the observed data {y(k)}|K|
k=1 that |K| is the number

of the image pixels, and linear model y(k) = x(k) + n(k)
where x(k) is the noise-free image and n(k) is additive white

Gaussian noise (AWGN), we can use the MAP estimator as

follows:

xMAP (k) = arg max
x(k)

[p(x(k)|y(k))]

= arg max
x(k)

[p(y(k)|x(k))p(x(k))] (8)

where p(x(k)|y(k)), p(y(k)|x(k)) and p(x(k)) are re-

spectively posterior, likelihood and marginal distribu-

tions. From y(k) = x(k) + n(k) we would have

p(y(k)|x(k)) = 1√
2πσ2

n

exp(− (y(k)−x(k))2

2σ2
n

). Thusthe MAP

estimator xMAP (k) is a solution of:

(y(k)− x(k))

σ2
n

+
d ln p(x(k))

dx(k)
= 0. (9)

For example, p(x(k)) can be chosen as a zero-mean Gaussian

with variance σ2(k). Note that, although the Gaussian pdf is

not a heavy-tailed distribution, but we use a local variance

for this pdf that means the image is locally modeled as a

Gaussian distribution. So, the produced local Wiener filer [19]

xMAP (k) = σ2(k)

σ2
n+σ2(k)

y(k) leads to an appropriate spatially

adaptive denoising method. However, a more appropriate

global model can be chosen according to the statistical proper-

ties of the steerable pyramid decomposition. The Laplacian pdf

p(x(k)) = 1

σ(k)
√

2
exp(−

√
2

σ(k)
|x(k)|) is a simple distribution

that is able to model the heavy-tailed nature of the steerable
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pyramid coefficients. Using this pdf, (9) leads to the soft

threshold function [26]:

xMAP (k) = sign(y(k))max(y(k)− σ2
n

√
2

σ(k)
, 0) (10)

It’s clear that using more accurate prior distribution can be

improved the denoising results, but usually these models are

more complicated. In the next section we can observe that the

proposed simple local soft threshold function (10) is able to

impressively suppress the noise when apply to the steerable

pyramid coefficients in an appropriate anisotropic window.

IV. THE PROPOSED ALGORITHM AND
SIMULATION RESULTS

In this section, we conclude the proposed shape adaptive

denoising algorithm in the steerable pyramid decomposition

domain and use this algorithm for denoising of several cor-

rupted images with AWGN in various noise levels.

IV-A. Shape Adaptive Steerable Pyramid Based Denoising
According to the presented discussions in the two last

sections, to apply our new denoising method, the following

steps are implemented:

• Initially, the image is transformed to the steerable pyra-

mid domain.

• An appropriate anisotropic window is obtained for each

coefficient of the steerable pyramid decomposition using

the described method in Section II. For kth coefficient

we name this window with S(k).

• For each coefficient, the proposed local soft threshold

function (10) is applied. For this reason, we need to

obtain the local variance σ(k) just by using the adjacent

coefficients inside S(k). Various methods can be pro-

posed for local variance estimation. For example, using

the maximum likelihood (ML) estimator we would have:

σML(k) = arg max
σ(k)

∏
k∈S(k)

e
−

√
2

σ(k) |x(k)|

σ(k)
√

2

= arg max
σ(k)

e
−

√
2

σ(k)
∑

k∈S(k) |x(k)|

σ(k)|S(k)| (11)

where |S(k)| is the number of coefficients in S(k). The

above equation is easily lead to:

σML(k) =

√
2

|S(k)|
∑

k∈S(k)

|x(k)| (12)

Note that to use (12), we must have an initial estimate

of x(k) that is not always available. A simple estimate

that can be obtained empirically is described as follows:

σemp(k) =
1

|S(k)|
∑

k∈S(k)

y2(k)− σ2
n (13)

that in many cases this equation is applicable.

• Finally, the enhanced steerable pyramid coefficients are

converted to the image domain implementing steerable

pyramid synthesis.

Fig. 1. An OCT image and denoised data with proposed method in this paper.

Table I. ISNRs for several denoising methods in steerable pyramid domain.
Image σn HT ST WIN Our Method

Cheese 25 6.37 7.47 5.01 10.18
Cheese 50 9.53 9.98 8.52 11.84

CameraMan 25 5.80 6.67 5.34 7.86
CameraMan 50 9.24 9.50 8.72 10.46

House 25 8.78 9.64 8.63 10.42
House 50 11.76 12.22 11.81 12.77
Aerial 25 4.22 4.85 4.50 4.98
Aerial 50 7.36 7.38 7.56 7.66
Boat 25 5.53 6.21 5.72 6.63
Boat 50 8.88 9.29 9.06 9.46

IV-B. Simulation Results
In this subsection, we implement the proposed algo-

rithm in previous subsection to evaluate its performance.

For simplicity, we implement the simplest version of

steerable pyramid decomposition using the available code

in http://decsai.ugr.es/ javier/denoise/software/index.htm. It’s

clear that we can spend more times and obtain better results

using modified version of this decomposition such as full

steerable pyramid decomposition.

Fig. 1 illustrates an optical coherence tomography (OCT)

image and denoised data using the proposed method in this pa-

per. Fig. 2 shows a comparison between denoising of 128×128
grayscale Cheese image for σn = 15 using local soft threshold

function with isotropic and anisotropic windows. The peak

signal-to-noise ratios (PSNRs) of our method is about 0.6 dB

higher than local soft thresholding with isotropic window. We

can also observe that our method is able to better preserves the

edges, while the method based on isotropic window smoothes

the edges. Also in the smooth area our method produces the

smoother regions than the other method.

Table I compares the improvement of signal to noise ratio

(ISNR) for the proposed algorithm in this paper with Wiener

filter (WIN), hard thresholding (HT) and soft thresholding

(ST) in steerable pyramid domain for several grayscale test

images at multiple noise levels. It’s clear that our algorithm

outperforms the others. Note that ST is as the proposed

shrinkage function in this paper but it doesn’t employ shape

adaptive estimation of variance and uses a global variance for

all pixels.

V. CONCLUSION AND FUTURE WORKS
In this paper we propose a new shape adaptive denoising

method in steerable pyramid decomposition domain using

local soft threshold function and benefit from the advantages

of both spatially adaptive algorithms and transform-based
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methods. The shape adaptive window selection results in a

segmentation before denoising process and so leads to better

preservation of edges and smooth area after denoising. We

implemented our method in an initial version of the steerable

pyramid decomposition (instead of image domain) due to

impressive properties of this transform. Better results can be

achieved by applying our method in the full steerable pyramid

domain (but the computational cost is increased). We also

choose a simple prior distribution (Laplacian pdf) and better

results may be obtained using more accurate/complicated prior

models. The effect of using other estimators such as MMSE

and MAE can be also tested in the future works. This method

can also be extended for denoising of other data such as true

video sequences and reduction of other types of noise.

Fig. 2. Comparison between denoised images using local soft threshold
function with isotropic and anisotropic windows. First column represents the
results of 128 × 128 Cheese with σn = 15 and second column is related to
256 × 256 TestPat with σn = 25.
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