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ABSTRACT

The main focus of this paper is the efficient approximation of the
non-uniform Fourier transform (NUFFT). We reformulate the stan-
dard NUFFT approximation as a projection of the exact discrete
Fourier transform onto a shift-invariant space. This reformulation
enables the use of sophisticated tools, developed in the context of
shift-invariant representations, to analyze the performance of the ap-
proximation. Using these techniques, we derive the optimal scale
factors for a specified interpolator. Assuming these scale factors,
we develop a worst-case error criterion that is only dependent on
the interpolating function. We propose an iterative re-weighted op-
timization algorithm to derive the optimized least square (OLS) in-
terpolator. This interpolator significantly reduces the approximation
error in comparison to the standard methods. The improved perfor-
mance of this scheme, for low oversampling factors, could lead to a
memory efficient algorithm for non-Cartesian Fourier inversion.

Index Terms— sampling, interpolation, NUFFT, MRI, non-
Cartesian

1. INTRODUCTION

The fast evaluation of the non-uniform Fourier samples of an N-point
discrete signal is a central problem in many areas including tomog-
raphy [1], magnetic resonance imaging [2], synthetic aperture radar,
and wavelets [3]. Since the brute force evaluation of the Fourier
sum at non-uniform samples is computationally expensive, the stan-
dard approach is to obtain them as the interpolation of the uniform
Fourier transform. The uniform Fourier transform is computed using
the standard K-point FFT (K ≥ N ), while support limited functions
(e.g., Kaiser-Bessel, Gaussian) are used to interpolate the samples.
It is reported that the weighting of the signal by appropriate scale-
factors, before evaluating the uniform FFT, significantly reduces the
approximation error. [4, 5].

Our work is motivated by iterative non-Cartesian MRI [2].
The computational complexity and accuracy of these algorithms
are heavily dependent on the quality of the NUFFT approxima-
tion. It is a general practice to evaluate the Fourier transform on
a fine uniform grid (e.g., K = 2N ) to minimize the interpolation
error [5]. However, this approach significantly increases the mem-
ory demands of the algorithm (for example, the reconstruction of
a three dimensional data-set with K = 2N requires eight times
more memory that the original data-set). Although the scale-factors
play a significant role in reducing the NUFFT error, they are often
selected arbitrarily [4] or are restricted to parametric families with
few degrees of freedom [5]. This often limits the performance of the
NUFFT approximation significantly.

The main focus of this paper is to derive a memory efficient
approximation to the non-uniform Fourier transform of a support-

limited sequence (type 2 NUFFT). We show that the widely used
NUFFT scheme is essentially a periodic shift invariant approxima-
tion of the exact discrete Fourier transform. Based on our earlier
results [6], we derive an exact and computable expression for the
worst-case mean square approximation error. This metric conve-
niently decouples the error contributions due to the scale-factors and
the interpolator into two separate positive terms. This enables us to
optimize both the scale-factors and the interpolator using the same
performance measure. Specifically, we obtain a closed form expres-
sion for the optimal least square scale-factors (OLS scale-factors)
for a specified interpolator. Assuming these scale-factors, we de-
rive the error metric that is only dependent on the interpolator. We
then introduce an iterative re-weighted minimization algorithm to
obtain the optimized least square interpolator (OLS-interpolator).
From theoretical comparisons, we find that the OLS-NUFFT sig-
nificantly improves the accuracy over classical approximations, es-
pecially when the length of the uniform FFT is small. Since the
length of the uniform FFT determines the memory demands of the
algorithm, these developments can lead to a more memory efficient
multi-dimensional NUFFT scheme.

2. THEORY

For simplicity, we restrict our attention to the 1-D NUFFT problem.
We are given equally spaced samples x[n]; n = −N/2 . . . N/2− 1.
The goal is to evaluate the discrete time Fourier transform (DTFT)
of this sequence

x̂(ν) =

N/2−1X
n=−N/2

x[n] exp

„
− j2πνn

N

«
; ν ∈ R, (1)

at the non-uniform frequency locations νm; m = 0..M − 1. The di-
rect evaluation of (1) at these samples is computationally expensive
(requires O(MN) operations). To reduce the computational cost in
evaluating (1), the standard practice is to approximate it as an inter-
polation of the K-point uniform discrete Fourier transform (DFT)
(K ≥ N ; K even) of h[n]x[n]:

cp[k] =

N/2−1X
n=−N/2

h[n]x[n] exp

„
− j2πkn

K

«
; k = −K/2, ..K/2−1.

(2)
The above summation is evaluated efficiently using FFT and has a
computational complexity of O(K log K). The weights h[n]; n =
−N/2, . . . N/2 − 1 are termed as scale-factors in the NUFFT lit-
erature. They are often chosen heuristically [4] or as a function of
ϕ [5]. The interpolation is performed using ϕ, assuming periodic
boundary conditions [4, 5]. This approximation can be expressed in
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two alternate ways:

x̂app(ν) =
X
k∈Z

cp[k]ϕ

„
K

N
ν − k

«
(3)

=

K/2−1X
k=−K/2

c[k]ϕp

„
K

N
ν − k

«
(4)

where ϕp is the K-periodized version of ϕ(ν) ∈ L2(R):

ϕp(ν) =
X
k∈Z

ϕ(ν − kK). (5)

In (3), cp[k] =
P

l∈Z
c[k + lK] is the sequence obtained as the

periodization of c[k].

2.1. Reinterpretation of NUFFT

To better analyze the NUFFT scheme, we now reformulate the stan-
dard NUFFT approximation as the projection of the discrete Fourier
transform x̂(ν) in (1) on to a shift invariant space. The NUFFT
scheme approximates the periodic signal x̂(ν) as a linear combina-
tion as in (3), where the coefficients cp[k] are obtained as the K-point
FFT of h[n]x[n] as in (2):

cp[k] =

N/2−1X
n=−N/2

x[n]h[n] exp

„−j2πkn

K

«

=

Z N
2

−N
2

x̂(ν)

N/2−1X
n=−N/2

h[n]ej 2π
K ( Kν

N
−k)n

| {z }
ϕ̃∗

p( K
N

ν−k)

dν (6)

In the second step, we substituted x[n] by the inverse Fourier trans-
form of x̂(ν) and interchanged the order of the integration and
the summation. Here ϕ̃∗ is the conjugate of ϕ̃. (6) enables us
to reinterpret the derivation of the coefficients cp[k] as the evalu-
ation of the inner-product between the discrete Fourier transform
of x[n] (denoted by x̂(ν)) and the periodized analysis functions

ϕ̃p. The analysis functions are specified by ˆ̃ϕp(2πn/K) = h[n].
Thus, the NUFFT approximation x̂app(ν) is essentially a pro-
jection of the exact DFT (x̂(ν)) onto the shift invariant space
Vϕp = span

˘
ϕp

`
K
N

ν − k
´
; k = −K/2 . . . K/2− 1

¯
. This

re-interpretation of NUFFT enables us to use the sophisticated tools
in the context of SI representations to analyze the performance of
NUFFT approximation.

2.2. Quantitative expression of the error

We had derived the expression for the average error in representing
an arbitrary function s(ν) in a shift invariant (SI) space in [6]. The
space Vϕp is only integer shift variant; shifting the function s(ν) to
sτ (ν) = s(ν − τ) by non integer multiples of the sampling step
affects the approximation error. The error is periodic with period
T = N/K. The average mean square error (averaged over all pos-
sible shifts) is shown in [6] as

η (s, ϕ, ϕ̃, K) =
K

N

Z N/K

0

‖sτ (·)− sτ,app(·)‖2L2([−N/2,N/2))dτ

=

∞X
n=−∞

|ŝ[n]|2 Eϕ,ϕ̃,K

„
2πn

K

«
, (7)

where the error kernel Eϕ,ϕ̃,K(ω) is given as

Eϕ,ϕ̃,K (ω) = 1− |ϕ̂(ω)|2
âϕ(ω)| {z }

Emin(ω)

+ âϕ(ω)
˛̨̨
ˆ̃ϕ(ω)− ϕ̂d(ω)

˛̨̨2
| {z }

Eres(ω)

. (8)

In (13), ŝ[n]; n ∈ Z are the Fourier series coefficients of s(ν), de-
fined by

ŝ[n] =
1

N

Z N/2

−N/2

s(ν)e
−j2πνn

N dν. (9)

In (8), âϕ(ω) =
P

k∈Z
|ϕ̂(ω + 2kπ)|2 and ϕ̂d(ω) = ϕ̂(ω)/âϕ(ω)

denotes the dual function of ϕ. Both Emin and Eres are positive
terms. Moreover, Emin is only dependent on ϕ, while Eres is is
dependent of the analysis function ϕ̃p.

2.3. Error analysis of the NUFFT approximation

We now apply the error formula to analyze the NUFFT approxima-
tion. Substituting for s(ν) by x̂(ν) in (13) from (1), we obtain

η (x̂, ϕ, ϕ̃, K) =

N/2−1X
n=−N/2

|x[−n]|2 Eϕ,ϕ̃,K

„
2πn

K

«
, (10)

The negative sign in the index of x[n] is due to the difference in the
definitions of ŝ[n] in (9) and x[n] in (1). Note from (10) and (8) that
the second term (due to Eres) will disappear if

ˆ̃ϕ(2πn/K) =
ϕ̂(2πn/K)P

k∈Z
|ϕ̂(2πn/K + 2kπ)|2 ; n = −N/2+1, ..N/2

(11)
With this specific choice of the analysis function, the error expres-
sion simplifies to

ηmin (ŝ, ϕ, K) =

N/2X
n=−N/2+1

|x[n]|2
P

k �=0 |ϕ̂(2πn/K + 2kπ)|2P
k∈Z

|ϕ̂(2πn/K + 2kπ)|2

(12)

Here we used the symmetry of the error kernel. The above expres-
sion indicates the minimum achievable mean square error for a spec-
ified signal s(ν), an interpolator ϕ and the sampling step K/N . Note
that the metric (12) is independent on the analysis function ϕ̃. The
approximation sapp(ν), derived using of the optimal analysis func-
tion specified by (11), is the orthogonal projection of s(ν) onto Vϕp .

The use of the optimal scale factors (11) will minimize the ap-
proximation error for a specified interpolating kernel. More impor-
tantly, this choice will lead to an error expression that is independent
of the scale factors. By evaluating the worst case least square error,
we will now obtain an error expression that is also independent of
the signal x[n].

η2
max = arg max

x:‖x‖L4=1
η2
min =

N/2−1X
n=−N/2

»
Emin

„
2πn

K

«–2

=

N/2−1X
n=−N/2

“P
k �=0

˛̨
ϕ( 2πn

K
+ 2kπ)

˛̨2”2

“P
k∈Z

˛̨
ϕ( 2πn

K
+ 2kπ)

˛̨2”2 (13)

Here, we used the Cauchy Shwartz inequality. Note that this is a
tight bound; any sequence that satisfies |x[n]|2 = Emin

`
2πn
K

´
will

lead to the worst case LS error.
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2.4. Optimized least-squares (OLS) interpolator

Our goal is to derive a ϕ : ‖ϕ‖L2 = 1, which is finitely supported in
the range [−J/2, J/2], (i.e., ϕ ∈ L2([−J/2, J/2])) that minimize
the worst case LS error:

ϕOLS = arg min
ϕ∈L2[−J/2,J/2]

N/2X
n=−N/2+1

“P
k �=0 |ϕ(x + 2kπ)|2

”2

`P
k∈Z

|ϕ(x + 2kπ)|2´2 .

(14)
Since this metric is a non-linear functional of ϕ, it is difficult, if not
impossible, to derive the optimal continuous domain function ϕOLS.
We propose derive the optimal discretization of ϕ using an iterative
re-weighted quadratic minimization. Towards this end, we rewrite
the the error expression as

η2 =

N/2−1X
n=−N/2

P
k �=0

˛̨̨
ϕ̂

“
2π(n+kK)

K

”˛̨̨2
„P

k

˛̨̨
ϕ̂

“
2π(n+kK)

K

”˛̨̨2«2

| {z }
hϕ[n]

X
k �=0

˛̨̨
˛ϕ̂

„
2π(n + kK)

K

«˛̨̨
˛
2

=
X
n∈Z

gϕ[n]

˛̨̨
˛ϕ̂

„
2πn

K

«˛̨̨
˛
2

(15)

where

gϕ[n] =

8<
:

0; −K/2 < n < K/2− 1
hϕ[n− 2lK]; (lK −N/2) < n < (lK + N/2− 1)

0 otherwise.

(16)
Assuming the weights g[n]; n ∈ Z to be specified, the criterion (15)
is a simple weighted norm in the Fourier domain. We will use this
simplification to derive the optimal interpolator in the next subsec-
tion.

2.5. Algorithm

We propose a two step iterative algorithm that uses the following
steps: Start with an initial set of weights g[n], corresponding to
h[n] = 1; n = −N/2..N/2− 1.

1. Using the current value of g[n], derive the optimal ϕ that min-
imizes (15), subject to ‖ϕ‖L2 = 1.

2. Using the current value of ϕ, evaluate the optimal weights
gϕ[n] specified by (16).

3. Exit if converged. Else, goto step 1.

We will now focus on step (1), where we derive the optimal dis-
cretized ϕ that minimize (15) subject to ‖ϕ‖2=1. Assuming an over-
sampling factor O and by choosing q[n] = ϕ(n/O), we reformulate
the derivation as

qOLS = arg min
q

0
B@qT FT WgF| {z }

A

q

1
CA subject to qT q = 1, (17)

where F is the KO × J/T − 1 DFT matrix, Wg is the KO ×
KO matrix with diagonal entries corresponding to gϕ[n]. Note that
A is a small matrix of dimension OJ − 1 × OJ − 1. We solve
this constrained minimization problem using Lagrange’s multiplier
methods to obtain

Aqmin = λminqmin (18)

where λmin is the minimum eigen value of A and qmin is the cor-
responding eigen vector. Since the iterative two-step process is an

approximation to the minimization of the non-linear criterion η2, we
use a relaxation to stabilize the algorithm. Specifically, we specify
the optimal q at the iteration i, denoted by qi as qi = αi qmin+(1−
αi)qi−1; 0 ≤ αi ≤ 1,where qmin is the solution to (18) at that step
and αi = arg minα

`
η2 (αqmin + (1− α)qi−1)

´
. This approach

is analogous to a line search; it ensures that the iterative algorithm
monotonically decrease the worst-case errors. At each iteration, we
check for the value of αi and exit if it is below a specified threshold.

3. RESULTS

We first demonstrate the convergence of the algorithm in a specific
example (K = 132, N = 128, O = 100, J = 4). We consider a
wide range of input initializations (ranging from Bspline of order 0
to order 5). It is seen from Fig. 1 that the final solution is the same,
irrespective of the initialization. We performed similar comparisons
for a wide range of parameter sets (K, N and O) and verified that
the algorithm converges to the same function in all the cases.
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(a) initializations
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(b) final solution

Fig. 1. Illustration of the convergence of the algorithm. The worst-
case errors are also the same, up to numerical precision.

3.1. Comparison with standard interpolators

We now compare the performance of the OLS function with Kaiser-
Bessel, Gaussian and min-max interpolators in this subsection. To
make the comparisons fair, we optimized these interpolators with
respect to the mean square criterion. We also use the OLS scale-
factors (11) for these interpolators. For the min-max interpolators
with K = 2N , we employ the scale-factors with the highest order
that are reported in [5]. Since the optimal min-max scale-factors
were only derived in [5] for K = 2N , we obtained the scale factors
by performing least square fit to the optimal Kaiser-Bessel scale-
factors (with β = 1; L = 22) as in [5].

The comparison of the interpolators and the error kernels at K =
132 and K = 256 are shown in Fig. 2. It is seen that the subtle vari-
ations in the shape of the interpolators in Fig. 2-a lead to significant
differences in the error kernels. In contrast to the OLS function, the
error kernels of the standard interpolators are significantly elevated
close to the edge of the signal as shown in Fig. 2-b, thus result-
ing in higher worst case errors. By spreading the error to all spatial
locations, the OLS interpolator significantly reduces the worst-case
mean square error. The OLS interpolator gave lower errors at most
spatial locations when compared with the other functions, even when
K = 256. However, the performance improvement in this case is
not as drastic as in (a-b).

In Fig. 3, we compare the different interpolator families based
on the worst-case mean square error (13). The comparisons were
performed at K = 132, K = 140 and K = 256 respectively. Fig.
3.a denote the error curves at K=132 and oversampling factor=100.
Similar comparisons are shown for K = 140 and K = 256 in
Fig. 3.b and Fig. 3.c respectively. The min-max estimator provides
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(c) interpolator: K = 256; J = 4
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Fig. 2. Comparison of the OLS interpolator with classical schemes.
(a)-(c) compares the interpolators at K = 132, N = 128,O = 100
and J = 7. (a) indicates the shape of the interpolators (b). Compar-
ison based on the mean square error kernel. (c). Comparison based
on the min-max error criterion derived in [5]. (d)-(f). Comparison of
the interpolators for K = 256, N = 128, J = 4 and O = 190. (d)
indicates shape of the interpolators while (e) and (f) shows the mean
square error kernel and the min-max error kernels respectively.

comparable errors for lower values of J . However as the length of
the interpolator increase, its performance deteriorate. This is due to
the limited number of scale-factor parameters that can be derived in
the min-max setting.

From these comparisons, it is seen that the proposed OLS
NUFFT scheme significantly outperforms its closest competitor: the
Kaiser Bessel interpolator, especially when K is small. For exam-
ple, the use of the OLS interpolator provides approximately a factor
of 5 × 103 decrease in the mean-square error at J = 9; K = 132.
The interpolator settings (J=9;K=132) provides a worst-case error of
3∗10−8 that is comparable to that obtained with J = 5 at K = 256.
Since lower value of K/N implies NUFFT algorithms with lower
memory demands, these cases are of foremost interest in practical
applications.

4. CONCLUSION

In this paper, we designed a new interpolator and its optimal scale
factors for the efficient evaluation of non-uniform Fourier transform.
Using the expression for the average least squares error in the con-
text of periodic shift invariant representations, we derived the op-
timal scale factors for a specified interpolator. Assuming the use
of these scale factors, we derived a worst-case error criterion that
is only dependent on the interpolating function. We then derived
the optimized least square NUFFT interpolator using an iterative re-
weighted optimization algorithm. The significant performance im-
provement provided by this scheme for low oversampling factors
could lead to faster and more memory efficient conjugate algorithms
for non-Cartesian Fourier inversion.
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(c) K=256

Fig. 3. Theoretical comparison of the different interpolator families.
(a)&(d) indicate the decay of the worst case mean square and min-
max errors respectively for K=132 and oversampling factor=100.
The worst-case discretization error is displayed in magenta. (b)&(e)
Comparison of errors for K = 140 and O = 170. As mentioned
previously, we used uniform scale-factors for the min-max interpo-
lators for (K = 132 and K = 140), while optimized min-max
scale-factors from [5] were used for K = 2N . (c) Comparison of
different kernels at K=256, N=128 and O = 190.
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