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ABSTRACT 
 
The Edge-Preserving Surface Estimation based on statistical 
jump regression analysis is a powerful approach for image 
denoising. However, it requires an accessorial corner-
preserving technique in which a corner threshold needs to 
be tuned. In this paper, we suggest a novel procedure based 
on local segmentation using Normalized Cuts which can 
well preserve the edges and corners at the same time 
without using the corner-preserving technique. Extensive 
experiments show that the proposed approach outperforms 
the state-of-the-art existing approaches.  
 

Index Terms— Image denoising, statistical jump 
regression analysis,  local segmentation, normalized cuts 
 

1. INTRODUCTION 
 
Image denoising is one of the important steps in image prep-
rocessing for performing high-level vision tasks such as 
recognition and scene interpretation. The goal of image 
denoising is to remove noise while preserving image 
features such as edges, corners and texture details as much 
as possible.  

All denoising methods can be roughly categorized as 
global methods, local methods and the combinations of 
them. The global methods based on regularization idea 
include Markov random field (MRF) method [1], Mumford-
Shah functional [2], anisotropic diffusion [3], total variation 
minimization[4]  and wavelet thresholding [5]. Nevertheless, 
when local characteristics of images differ significantly 
across the segments, it is difficult to set global parameters to 
obtain better denoised images. This is the motivation to 
adopt a segmentation-based approach to denoise each 
homogenous region independently of the others [6]. 
However, image segmentation is also a very difficult task 
due to the global parameters, and the segmentation-based 
approaches can not effectively preserve edges among the 
segments. 

For the sake of overcoming the difficulties of the global 
methods, local denoising approaches such as median 
filtering [7], adaptive smoothing filtering [8] and bilateral 
filtering [9] attract much attention in the literature. Gijbels 

et al [10] proposed the Edge-Preserving Surface Estimation 
(EPSE for short). Besides the ideal property of edge pre-
servation, EPSE has many advantages such as noniterative 
feature, numerical simplicity and fewer parameters which 
can be chosen by cross-validation (CV) procedure in a data-
driven way. However, because the procedure constrainedly 
divides the local neighborhood containing edges into two 
half-circles according to the gradient direction, the half 
neighborhood can not be accurately adaptive to local 
features of the underlying surface. One of the evidences is 
that some blurring may still happen around the corners. 
Although this problem can be partially solved by a corner- 
preserving technique, it is difficult to determine a corner 
threshold. 

The main idea of the algorithm proposed in this paper is 
that the local neighborhood should be segmented into two 
parts according to the underlying local features. Then, the 
observations in the same part as the filtered pixel are used 
for estimation. We use Normalized Cuts [11] ( Ncut for 
short ) as our segmentation procedure. The approach can 
therefore preserve edges and corners at the same time 
without special corner-preserving technique and achieves a 
better performance than EPSE.  

The paper is organized as follows. After giving some 
relevant preliminary in Section 2, a new denoising method 
of images is proposed in Section 3. Section 4 presents a set 
of experimental results and comparisons with existing 
denoising techniques. Section 5 provides concluding 
remarks. 

 
2. SOME PRELIMINARIES 

 
2.1. Noise model 
 
Digital images are usually corrupted by noise during image 
acquisition and transmission. Among various noise models, 
additive Gaussian noise is encountered frequently in 
practice which is formulated by:  

( , ) , 1, , .i i i iZ m X Y i nξ= + = � 2~ (0, )i Nξ σ                      (1) 
where m  is the true image with n  pixels. iZ s represent the 
observations. ( , )i iX Y s are pixel points and iξ s represent 
the zero-mean Gaussian noise with variance 2σ . 
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2.2. Local linear kernel smoothing 
 
Local linear kernel smoothing estimates 2D regression 
surface by minimizing the weighted mean square error 
within local area: 
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where ˆ ( , )ca x y , ,ˆ ( , )c xa x y  and ,ˆ ( , )c ya x y  estimate a , b and 
c  respectively which determine the local regression surface. 

( , )K x y is a kernel function defined by: 
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which has a compact support 2 2{( , ) : 1}x y x y+ ≤ . 
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B
−= ⋅ . B is a 2× 2 global bandwidth 

matrix ( , )diag h h and h  is the scale of  the support. 
 
2.3. Edge-Preserving Surface Estimation 
 
Gijbels et al [10] have improved the local linear kernel 
smoothing by the jump detection in order to preserve edges. 

After a , b and c  being estimated from (2) in a circle 
area with center ( , )x y  and radius h , the gradient direction 
of m around ( , )x y  can be estimated from ,ˆ ( , )c xa x y and 

,ˆ ( , )c ya x y according to the first order Taylor expansion of 
( , )i im X Y  around ( , )x y , and then a line passing ( , )x y and 

perpendicular to the gradient direction divides the local 
neighborhood into two half-circles. In each of the two half-
circles, the surface estimation is implemented again using 
the local linear kernel estimators with half-circle support: 
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where 1, 2j = . (1)
BK  and (2)

BK  are the same as BK  except 
that  the supports have been restricted to the two half-circles.  

Then the quality of the three estimators : ˆca , 1̂a  and 2â  
are measured by Weighted Residual Mean Squares (WRMS) 
of the related fitted surfaces:  
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where ( )BK i denotes (( ), ( ))B i iK X x Y y− − , and ( ) ( )j
BK i  

denotes ( ) (( ), ( ))j
B i iK X x Y y− − , for 1, 2j = . 

     The final estimation of the noise image is defined by:  

1

1 1 2

2 1 2

2
1

ˆ ( , ) diff( , )
ˆ ( , ) diff( , ) WRMS ( , ) WRMS ( , )

ˆ ( , ) ˆ ( , ) diff( , ) WRMS ( , ) WRMS ( , )
ˆ ˆ( , ) ( , )

diff( , ) WRMS ( , ) WRM
2

ca x y x y u
a x y x y u x y x y

m x y a x y x y u x y x y
a x y a x y x y u x y

≤
> <

= > >
+

> = 2S ( , )x y

�
�
��
�
�
�
��

       (7) 

where u  is a threshold which balances the edge preserving 
and noise removing properties. diff ( , )x y is defined by: 

1

2

diff( , ) max{WRMS ( , ) WRMS ( , ),
WRMS ( , ) WRMS ( , )}

c

c

x y x y x y
x y x y

= −
−

                      (8) 

     The bandwidth h  and the threshold u  can be chosen by 
cross-validation procedure. 
 
2.4. Normalized Cuts 
 
Ncut is a popular approach for image segmentation which 
formulates the image segmentation problem as a graph 
partitioning problem. Intensity image can be represented as 
a weighted undirected complete graph ( , )G V E= , where 
the nodes of the graph represent individual pixels and the 
edges between every pair of nodes represent the similarity 
weight ijw  between pixels. To partition the set of vertices 
into disjoint sets A and B , the Ncut criterion measures not 
only the total dissimilarity between the different groups but 
also the total similarity within the groups. This criterion can 
avoid cutting small sets of isolated nodes in graph. 

Typically, the similarity weight is defined by: 
22
22
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where ( )F i  and ( )X i  are the intensity and the spatial 
location of pixel i . Iσ  and Xσ are corresponding scale 
parameters which control the tradeoff between the 
brightness likelihood and spatial proximity. They are 
typically set to 10 to 20 percent of the total range of 
intensity and spatial location distance respectively. 
 

3. SURFACE ESTIMATION BASED ON LOCAL 
SEGMENTATION USING NORMALIZED CUTS 

 
Although EPSE can preserve edges, it is hard to preserve 
corners due to the half-circle partition of local nei-
ghborhood. In [10], a corner-preserving technique is 
proposed, but it is hard to choose a proper corner threshold. 

In order to preserve corners, local linear kernel 
smoothing had better to use only those neighboring pixels 
which are similar to the estimated point ( , )x y  in some way. 
Therefore, we propose a local segmentation approach based  
on Ncut to segment the local neighborhood into two parts. 
Within each part, it presents high similarity in intensity and  
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spatial location, whereas it is more dissimilar between the 
different parts. 

Since all the observations in the circle neighborhood are 
labeled after segmentation, we can easily choose the 
observations belonging to the same group as point ( , )x y for 
estimation.  

On the assumption that the observations are segmented 
into A  and B  groups, if point ( , )x y  belongs to A , let 

AΩ = , otherwise, let BΩ = . By now, we can modify the 
edge-preserving surface estimator as: 
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where the support of ( )
BK Ω  has been restricted to Ω  . 

Accordingly, the final surface estimator is defined by: 
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                               (11)                                        

 
4. EXPERIMENTS 

 
We apply the proposed method to the three models [see 
Figure 1] described by [10] as follows: 

2 2 2
2 2

1 [( 0.5) ( 0.5) 0.25 ]
( , ) 2( 0.5) 2( 0.5)

x y
m x y x y I

− + − <
= − − − − +

2 [ 0.6sin( ) 0.2]( , ) 0.25(1 ) (1 0.2sin(2 )) y xm x y x y x I ππ > += − + +

3 [ 1 0]( , ) cos(4 (1 )) 2cos(4 (1 )) x ym x y x y x y Iπ π + − >= − − − − −
           (12) 
where ( , ) [0,1] [0,1]x y ∈ × , [ ]AI equals 1 if A is true, and 0 
otherwise.  

The h  and u  in all of the experiment are selected by 
the cross-validation procedure and we choose the best 
corner threshold C  for EPSE. 

Table 1 shows the denoising results of proposed method 
and other approaches mentioned in [10] for Models 1-3, 
where �MISE  is the approximated Mean Integrated Squared 
Error [10]. Our method is denoted as LSE for short. Here 
we quote the �MISE  values of other methods computed by 
[10]. As we can see, the proposed method outperforms all 
other approaches for the three models when 128 128n = ×  
and 0.2σ = . 

The experiment is also carried out on Model 4, which is 
the same as Model 1 except it is triangular. Comparing with 
the EPSE using corner-preserving technique, the proposed 
method shows a better performance in preserving the corn-
ers especially the sharpest one [see Figure 2]. 

Furthermore, Table 2 shows that the proposed method 
achieves better results for Models 1-4 than EPSE under 
different noise levels.  

Finally, we apply the proposed method to some standard 
test images [see Figure 3] in which the gray levels are in 

 
 
 
 
 
 
 
              (a)                            (b)                           (c) 
 
Fig.1.  (a) model1            (b)model2              (c)model3 
 

Table 1 Comparison of denoising performance by �MISE  

 
 
 

 
 
 
 
 
 
                (a)                                           (b) 
 
 
 
 
 
 
 
 

(c)                                           (d) 
 
Fig.2. (a)Model4. (b) Noisy image ( 0.1σ = ). (c) Result of 
EPSE when 0.4C = , 0.023h = , 0.02u = . (d) Result of 
LSE when 0.4Iσ = , 4Xσ = , 5r = , 0.047h = , 0.02u = . 

 
[0,255], 256 256n = × and Gaussian noise with 

10,15,20,25σ =  is added respectively [see Table 3].  
The comparison between EPSE and LSE demonstrates 

that the proposed method has a better denoising 
performance for real images as well as synthetic images. 

 

Method Model1 Model2 Model3

LSE 
0.0009 

(h=0.047, 
u=0.06) 

0.0008 
(h=0.055, 
u=0.05) 

0.0015 
(h=0.039,
u=0.06) 

EPSE 0.0012 
(h=0.047) 

0.0010 
(h=0.055) 

0.0018 
(h=0.039)

Wavethresh 0.0058 0.0064 0.0076 
BLS-GSM 0.0020 0.0019 0.0039 

MRF 0.0011 0.0007 0.0033 
Median Filter 0.0032 0.0036 0.0044 
Bilateral Filter 0.0023 0.0024 0.0025 
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Table.2 Comparison between EPSE and proposed method 
for Model1-4 by the means of �MISE  

 
5. CONCLUSION 

 
In this paper, we have presented an LSE algorithm which 
improves the EPSE algorithm for edge-preserving image 
denoising. LSE relies on the local segmentation using Ncut 
to overcome the corner-preserving issue. Therefore, in LSE, 
all the observations belonging to the same segment as the 
filtered pixel are used for estimation. Compared to EPSE, 
LSE preserves the edges and corners in the denoised images 
at the same time without requiring the corner-preserving 
technique. Experiments on synthetic and real images show 
that the proposed method has a better denoising per-
formance. 
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