
MULTIVIEW VIDEO COMPRESSION AND STREAMING
BASED ON PREDICTED VIEWER POSITION

Dinei Florêncio and Cha Zhang

Microsoft Research
One Microsoft Way, Redmond, WA 98052, USA

{dinei,chazhang}@microsoft.com

ABSTRACT

Recent technological advances have made possible a number of
new applications in the area of 3D video. One of the enabling tech-
nologies for many of these 3D applications is multiview video cod-
ing, which has received significant attention in the last several years.
However, the fundamental need of multiview coding for applications
like immersive tele-conferencing has not been addressed. In this pa-
per we define the boundaries of the problem, and show how a simple
algorithm can yield gains of up to 2X reduction in bitrate with similar
PSNR in the synthesized view. Our algorithm is based on using an
estimate of the viewer position to compute the expected contribution
of each pixel to the synthesized view, and encoding each macroblock
of each camera views with quality proportional to the likelihood that
the pixel will be used in the synthetic image.

Index Terms— Multiview compression, streaming, view-
dependent, immersive tele-conferencing

1. INTRODUCTION

Advances in camera, display and networking technology have
enabled a new set of applications for three dimensional (3D)
scene communication, among which are 3D TV/free viewpoint
TV (FTV) [1], tele-immersive environment [2], immersive tele-
conferencing [3], etc. In these applications, multiple video cameras
are often used to simultaneously acquire the visual scene from dif-
ferent viewpoints. These videos are then transmitted to the remote
end for rendering, providing the user an immersive experience.

Due to the high raw data rate of multiview video, multiview
video compression is regarded as an essential piece of technology
to enable 3D communication, and has attracted a lot of attention
recently [4]. In particular, researchers have studied extensively on
predictive coding for multiview video compression, since there is
apparently huge redundancy across the videos from different view-
points. Work has also been done to impose additional constraints for
compression, such as delay constraints and random accessibility [5].

Since 3D TV is one of the most dominant driving forces of mul-
tiview video, most multiview video compression schemes assumes a
two-stage process – an offline stage for compression and an online
stage for streaming. Namely, the videos are first compressed with
advanced predictive coding schemes and stored. When broadcasting
to the remote end, all streams are sent across the network for decod-
ing and rendering. In the 3D TV scenario, the data are transmitted
through multicast channels, which can be very efficient if there are
thousands of remote viewers.

The need to generate images from an arbitrary point may arise
for two reasons: viewpoint selection, and parallax simulation. In

��������� ��	�

�
������
�
����

����
�������������

���	���������

Fig. 1. Immersive tele-conferencing scenario. The system could be
symmetrical, i.e. site B could also sent its multiview video to site A.

viewpoint selection, the user is allowed to select a desired point of
view, and video is generated/presented from that viewpoint. In this
case (unless we are using a broadcast medium) the server may simply
generate the desired view, then encode it and send that to the user. In
other words, we either need current multiview coding (to encode all
images and broadcast), or we can send just one/two, and traditional
video coding or stereo coding is enough.

A main claim in our paper is that none of the current coding so-
lutions addresses a very important scenario: providing the sensation
of parallax in a one-to-one (or one-to-few) scenario. In that case, the
round trip delay between the user and the server is too high to pro-
vide adequate parallax feedback, and traditional multiview coding is
a significant waste of bandwidth.

A typical application is immersive tele-conferencing. Without
loss of generality, let us consider a two-party conferencing session
between site A and site B (Fig. 1). At site A a set of cameras is used
to capture the scene. The videos are compressed with predictive
coding, and sent to site B. The videos are then decompressed and
rendered to the user in an interactive fashion, where the user may
change their virtual viewpoint from time to time. Such a scenario,
while simple, presents a number of challenges. For instance, the
coding efficiency must be high, and the amount of data transmitted to
the remote site must be kept low. To support interactivity , the videos
must be compressed and sent to the remote site with little delay. To
support parallax, it is imperative that the view be generated at the
receiver side.

In immersive tele-conferencing, the traditional approach de-
scribed above for 3D TV is not efficient any more. The remote user
may only need to synthesize one or two images from the virtual
viewpoints. It is very likely that only two or three nearby captured
videos will be necessary to perform the rendering, and all the other

657978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009

video streams that are encoded and transmitted become useless.

An alternative solution that has the best possible coding and
transmission efficiency is to render the virtual view at site A and send
only the compressed rendered image to site B. This requires site B to
send its current virtual viewpoint and look direction to site A in an
instantaneous fashion. Unfortunately, any network can have delays,
which will introduce a lag between the time the user changes his/her
viewpoint and the time the rendered image makes the change. This
is not acceptable in interactive applications.

In interactive static scene browsing and streaming, researchers
have proposed additional random access requirements on multiview
compression [6]. Namely, by limiting the inter-frame dependencies
between neighboring images, the decoding of any image block can
be successful if a small set of other dependent image blocks are
decoded. Index tables can be built to ensure that the compressed
stream of image blocks is randomly accessible. Only the image
blocks that are needed to render the virtual view is requested from
the remote site during interactive browsing. Unfortunately, although
the extension of the above approach to multiview video is straight-
forward, such a scheme is questionable. First, there is a delay
between the stream request and the arrival of packages. Second,
in multiview video compression, limiting the predictive coding for
lower inter-block dependency can significantly reduce the coding ef-
ficiency. Third, since the scene is constantly changing, local caching
techniques as in [6] may not be very effective. If a predicted block
needs to trace back 3-4 other predicted blocks and finally a few
intra-coded blocks in order to be decoded, it may be much more
efficient to simply intra-code that image block and sent to the user.

In this paper, we propose a novel multiview compression and
streaming scheme for immersive tele-conferencing (or other single-
user view including parallax effects). Take the scenario in Fig. 1
as an example. The user at site B first sends his/her current view-
point/look direction and motion information to site A. Site A renders
the view (one or multiple) and generates weight maps for all the
video frames. The weight maps indicates the quality requirement of
each pixel or macroblock. If the weight is high, the pixel is used for
rendering and needs to be encoded at high quality. Otherwise, the
pixel can be heavily compressed. Site A then adaptively encode the
multiview video based on these weight maps, and stream the video
to site B for regular decompression and rendering. Delay effects can
be alleviated by motion prediction and weight map smoothing. We
show that such a scheme can dramatically improve the coding and
streaming efficiency compared with traditional approaches.

The rest of the paper is organized as follows. Multiview video
rendering and weight map generation are discussed in Sec. 2. Adap-
tive multiview video compression with the weight maps is described
in Sec. 3. Experimental results are given in Sec. 4. Conclusions and
future work are presented in Sec. 5.

2. MULTIVIEW VIDEO RENDERING

Multiview video rendering belongs to the broad research field of
image-based rendering [7], and has been studied extensively in the
literature. In this paper, we focus on one particular form of multiview
video – multi-stereoscopic video with depth maps. We assume we
are given a number of video sequences captured from different view-
points. Meanwhile, a single depth map is available to facilitate the
virtual view rendering. An example data set is shown in Fig. 2 [8].
It is worth pointing out that although our compression and stream-
ing algorithm is introduced on this data format, the method can be
applicable to other multiview video formats.

��� � ��� � ��� �

��� � ��� � ��� 	

���
 ��� � ���� ���� ��

Fig. 2. An example multiview data set.
��� �

��� � ��
�	
 ���

��
�
�

�
	���

��� �

��� �

���	���
��
�
����	

��� �

Fig. 3. The rendering process from multiview video.

In the following, we briefly describe the process of rendering an
image from a virtual viewpoint given the image set and the depth
map. As shown in Fig. 3, given a virtual viewpoint, we first split
the to be rendered view into light rays. For each light ray, we trace
the light ray to the surface of the depth map, obtain the intersection,
and reproject the intersection into nearby cameras (cam 3 and 4 as
shown in Fig. 3). The intensity of the light ray is thus the weighted
average of the projected light rays in Cam 3 and Cam 4. The weight
can be determined by many factors [9]. In the simplest form, we can
use the angular difference between the light ray to be rendered and
the light ray being projected, assuming the capturing cameras are at
roughly the same distance to the scene objects.

Care must be taken to perform such rendering, as when the vir-
tual viewpoint moves away from Cam 4 (where the depth map is
given), there will be occlusions and holes when computing the light
ray/geometry intersection. In our algorithm, we first convert the
given depth map into a 3D mesh surface, where each vertex corre-
sponds to one pixel in the depth map. The mesh surface is then pro-
jected to the capturing cameras to compute any potential occlusions
in the captured images. Finally, the mesh is projected to the virtual
rendering point with multi-texture blending, similar to that in [9].
For each vertex being rendered, it is projected to the nearby captured
images to locate the corresponding texture coordinate. This process
takes into consideration the occlusion computed earlier. That is, if a
vertex is occluded in a nearby view, its weight for that camera will
be set to zero.

Fig. 4 shows one of the images rendered from a virtual view
point nearby Cam 2 (slightly rotated view direction). The weight
maps clearly demonstrate whether a pixel in a captured video frame
will be useful for rendering this particular virtual view. In Fig. 4,

658

�������� ���	�
��� ���	� ���
�� ����	� ���

�� ����	� ���
�� ����	� ���
��� ���	� ���

�� ����	� ���
�� ����	� ���
�� ����	� ���

Fig. 4. The weight maps generated by the rendering process.

brighter pixels are the ones with larger weights. Note even for Cam
7, which is the farthest from the virtual viewpoint, there are still
pixels being used due to occlusions. Naturally, during compression
of the multiview video, the pixels with high weights shall be en-
coded with high quality, while the rest pixels can be encoded with
low quality. Such an adaptive compression scheme is the key to our
algorithm, and will be explained in detail in Sec. 3.

The weight maps in Fig. 4 are computed from a single virtual
viewpoint. If there are multiple remote participants, we can compute
such weight maps individually for each participant and average them
to obtain a combined weight map. A similar scheme can be used to
combat the delay issue that may be introduced by network transmis-
sion. For instance, assume there is a time τ delay between the two
conferencing sites. When site A receives the virtual viewpoint re-
quest from site B (sent at time t), it has already been t+τ . However,
if site A also sends the user’s motion information, it is possible to es-
timate the user’s viewpoint at time t + τ by the user’s moving speed
to be within a certain range. With that information, multiple virtual
rendering within the estimated range can be conducted to compute
a combined weight map for compression. In addition, if the user’s
viewpoint does not change significantly, we may achieve a similar
effect by simply smoothing the computed weight maps. As shown
in Sec. 3, during adaptive multiview video compression, the weight
map will be converted into a coarser one for macroblock based en-
coding, which effectively smoothes the weight map too.

3. ADAPTIVE MULTIVIEW VIDEO COMPRESSION

The objective is to maximize the quality of the synthesized image
corresponding to the virtual viewpoint. (The synthesized image is,
of course, based on the camera images, but not all pixels are equally
used.) The point we exploit is to encode with higher fidelity por-
tions of the images that are more likely to be used by the receiver to
synthesize the final view. For that purpose, we use a modified ver-
sion of the H.264 codec which allows us to specify the quantization
parameter QP for each macroblock.

Deriving the optimum strategy for assigning the QPs requires
detailed knowledge of the rate-distortion curve for the given images.
Instead, we compute the quantization parameter for each macroblock
QPmb by using a BaseQp and a simple ad-hoc mapping:

��� � ����� ��� � �����

��� 	 ����� ���
 �������� � �����

��� � ����� ��� �������� � �����

Fig. 5. QP values for weight maps of Fig. 4.

��� � ��� ���� �

Fig. 6. A segment of encoded images from cameras 2, 3, and 4.

QPmb = BaseQp + 6log2

√
1/256

∑
mb

w2
i (1)

where wi is the predicted weight for each pixel in the macroblock.
Note that we take into consideration the logarithmic scale of PQ in
H.264, which doubles the quantization step for each increment of 6
in QP. Based on the above rule, we compute QP for each macroblock
in each of the camera images, and run our modified H.264. Note that
we also limit the QP to the maximum H.264 value of 51. Figure 5
illustrates the final QP values for the same frames as Figure 4. Figure
6 shows a segment of the corresponding encoded images for cameras
2, 3, and 4. Note how portions of the image that have low weights
(and thus high QP) are much more coarsely quantized.

4. EXPERIMENTAL RESULTS

As it can be expected, the savings are significant. Knowing in ad-
vance which portions of the image are likely to be (or not) used to
synthesize the view provides a significant advantage, as we can al-
locate bits in proportion to the likelihood that the pixels will be used

659

2 4 6 8

37

39

41

43

45

Fig. 7. PSNR for the synthesized image (in dB) as a function of
bitrate (in Mbps) for H.264 (x) and proposed (o).

Fig. 8. Zoom of synthesized images: H.264 @ 3.4 Mbps (left), no
coding (center) and proposed @ 1.7 Mbps (left).

in the synthetic view. Experimental results show savings of around
half the rate for same PSNR in the synthesized image. Of course
specific results will depend heavily on system elements, including
the motion dynamics of the viewer, and the total transmission de-
lay (the higher the delay, the less reliable the position prediction will
be). Figure 7 shows the PSNR figures for the Break Dance sequence,
using standard H.264 versus our codec (note that in both cases each
camera is encoded independently). It can be seen that our proposed
method achieves the same PSNR at around half the rate as H.264.
Figure 8 shows the synthesized image from each algorithm.

Of course, another big question is what happens when the pre-
diction of the viewer position is not 100% accurate. This is ex-
tremely important, after all, if the prediction was 100% accurate we
could simply render the synthetic view at the encoder, and send only
that view. We simulated this uncertainty by rendering the view from
a view point deviating from the position used to compute the weight
maps. Figure 9 shows the results, it can be that for a deviation of
around 10 cm from the estimated position, the loss is about 1dB.
At an uncertainty of 20 cm, the loss is about 2dB, erasing the gains
obtained with the proposed scheme. Of course, even with a 200ms
delay, we expect to be able to have a precision better than 10cm of
the current position of the viewer’s head.

5. CONCLUSIONS AND FUTURE WORK

We have presented a novel view-dependent multiview video com-
pression and streaming framework for immersive tele-conferencing.
The key idea is to let the remote participant send the capturing site its
current viewpoint and motion information. The capturing site then
renders the virtual view and obtains a set of weight maps for the

0 5 10 15 20 25 30
38

39

40

41

Fig. 9. PSNR of the reconstruction (in dB) as a function of standard
deviation of predicted viewer position (in cm).

control of an adaptive compression scheme to maximize coding effi-
ciency and minimize network bandwidth. We have shown that such
a scheme dramatically outperforms the traditional non-adaptive cod-
ing schemes.

Although the proposed coding strategy does outperform the ex-
isting solution by around 2X, there is still a lot of space for im-
provement. With proper optimization and adequate design, it should
be possible to reach achieve another 2X in rate reduction, possibly
more. The main contribution of this paper is actually to point out
a new research sub-area: Real-time, single user, parallax-based free
viewpoint video coding. Of course, additional contributions are the
initial ideas and algorithm presented, as well as the proposed metric
to compare results.

Immersive tele-conferencing creates a new exciting research
venue for multiview video processing, compression and stream-
ing. While significant improvement has already been shown with
our simple approach, there are many future research opportunities.
Particularly associated with this paper would be extensions to ex-
plore interview-coding, joint user tracking and compression, rate
distortion optimization of the overall codec, and channel coding for
multiview compression. Other related research areas that will help in
making an immersive tele-conferencing practical include immersive
display technologies, effective user/eye tracking, and many others.

6. REFERENCES

[1] A. Kubota, A. Smolic, M. Magnor, M. Tanimoto, T. Chen, and C. Zhang,
“Multi-view imaging and 3dtv,” IEEE Signal Processing Magazine, vol.
24, no. 6, pp. 10–21, 2007.

[2] Z. Yang, W. Wu, K. Nahrstedt, G. Kurillo, and R. Bajcsy, “Viewcast:
View dissemination and management for multi-party 3d tele-immersive
environments,” in ACM Multimedia, 2007.

[3] H. Baker, D. Tanguay, I. Sobel, D. Gelb, M. Goss, W. Culbertson, and
T. Malzbender, “The coliseum immersive teleconferencing system,”
Tech. Rep., HP Labs, 2002.

[4] M. Flierl and B. Girod, “Multiview video compression,” IEEE Signal
Processing Magazine, vol. 24, no. 6, pp. 66–76, 2007.

[5] A. Smolic and P. Kauff, “Interactive 3-d video representation and coding
technologies,” Proceedings of the IEEE, vol. 93, no. 1, pp. 98–110, 2005.

[6] C. Zhang and J. Li, “Interactive browsing of 3D environment over the
internet,” in Proc. SPIE VCIP, 2001.

[7] C. Zhang and T. Chen, “A survey on image-based rendering – represen-
tation, sampling and compression,” EURASIP Signal Processing: Image
Communication, vol. 19, no. 1, pp. 1–28, 2004.

[8] C.L. Zitnick, S.B. Kang, M. Uyttendaele, S. Winder, and R. Szeliski,
“High-quality video view interpolation using a layered representation,”
in ACM SIGGRAPH, 2004.

[9] C. Buehler, M. Bosse, L. McMillan, S. J. Gortler, and M. F. Cohen,
“Unstructured lumigraph rendering,” in ACM SIGGRAPH, 2001.

660

