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Abstract—Symmetric distributed source coding has made great
progress in the past several years. However, few attempts have been tried
to use the symmetric distributed source coding schemes in real data
compression scenarios. In this paper, with the inspiration of previous
symmetric distributed source coding schemes, we first put forward a
novel syndrome-based symmetric distributed coding scheme which can
achieve the whole Slepian-Wolf rate region. Then we propose a general
architecture for symmetric distributed multiview video schemes. Our
experiments show very encouraging results. In the high-rate case, our
scheme can achieve great rate saving from separate H.264 coding scheme
at the same video quality.
Index Terms—symmetric distributed multiview video coding, dis-

tributed source coding, LDPC, nonuniform channel, H.264

I. INTRODUCTION

Multiview video applications such as 3D TV and wireless camera

sensor network have become more and more popular and attract

lots of research interest in the past decade. Multiview video systems

normally use tens and hundreds of synchronized cameras to capture

an enormous amount of video data for storage and transmission.

Therefore, it is indispensable to design efficient and effective com-

pression algorithms to reduce the size of video data. A popular ap-

proach to multiview video compression is to use the traditional block-

based hybrid coding method to remove the intra-stream and inter-

stream redundancies among multiple video streams. This is normally

referred as joint multiview video coding(JMVC). For example, Joint

Video Team (JVT) of MPEG and ITU-T is now developing a Joint

Multiview Video Model (JMVM) which is based on the H.264 hybrid

video coding standard [1]. However, JMVC demands communication

between cameras to achieve compression.

Recently distributed multiview video coding (DMVC), which is

rooted in the distributed source coding theory [2], has gained lots

of research attention. Distributed source coding that exploits the

statistics of source signals at the decoder to achieve the compression

is essentially different from joint source coding such as methods

standardized by MPEG and H.26x which achieves the compression

by exploiting the source statistics at the encoder. Since then, dis-

tributed source coding has attracted lots of researchers’ interest and

many results have been produced [2]. Practical distributed video

coding algorithms have also been developed and [3] summarizes

recent advances on distributed video coding. In theory, DMVC

holds the promise to achieve the same compression performance as

JMVC while demanding no communication between cameras. Several

distributed multiview video codecs [4], [5] are recently proposed.

However, those approaches are based on asymmetric Slepian-Wolf

codes which can not achieve the whole Slepian-Wolf rate region and

thus limit the rate allocation options between the encoders.

Thirumalai et. al [6] and Taglisacchi et. al [7] use source splitting

and asymmetric Slepian-Wolf codes to realize symmetric distributed

multiview video coding. However, source splitting might incur per-

formance loss. Recently several researchers have designed a capacity-

approaching symmetric Slepian-Wolf code which can achieve the

whole Slepian-Wolf rate region [8], [9], [10]. Though these solutions

are elegant, it is difficult to use them to design symmetric distributed

multiview video codec since they implicitly assume that an encoder

knows the exact bit correspondence between correlated sources. In the

case of distributed multiview video coding, pixel correspondence be-

tween two correlated images is not known at the encoder and can only

be inferred at the decoder since there is no communication channel

between two encoders. Without the assumption of bit correspondence

at the encoders, those approaches fail to decode the original source

at the decoder. Though the approaches proposed in [11], [12] can

handle the bit incorrespondence problem, it is still elusive to design

capacity-approaching codes.

In this paper, we first put forward a novel syndrome-based ap-

proach to realize the symmetric Slepian-Wolf coding which can

achieve the whole Slepian-Wolf rate region. The basic idea is to use

nonuniform channel [13] to design LDPC codes used for symmetric

Slepian-Wolf coding. We then describe a symmetric distributed

multiview video codec (SDMVC) that uses the proposed symmetric

Slepian-Wolf code and is able to handle the pixel incorrespondence

problem at the encoder. In addition, the proposed symmetric multi-

view video codec can outperform separate H.264 coding of two stereo

video sequences.

II. SYMMETRIC SLEPIAN-WOLF CODE

Since distributed source coding is dual to channel coding, the

dependency between two correlated sources can be modeled as a

virtual correlation channel. Thus powerful channel codes such as

Turbo codes or low density parity check codes (LDPC) can be

used to realized Slepian-Wolf codes. Distributed video coding is the

application of Slepian-Wolf codes on video data. Previous distributed

multiview video codecs [3] are based on the asymmetric Slepian-

Wolf coding schemes. Symmetric distributed multiview video coding

is expected to achieve better performance by using capacity-achieving

symmetric Slepian-Wolf codes.

In this section, we propose a novel approach to realize symmetric

Slepian-Wolf coding. We call the proposed approach the Syndrome-

based Nonuniform Symmetric Slepian-Wolf Coding scheme (SNS-

SWC). It is inspired by the work [10], [12]. The basic idea of the

proposed approach is to design two nonuniform LDPC codes [13]

and let each source transmit a complement set of source bits and

syndrome bits. Its architecture is illustrated in Fig. 1.

Given two correlated n-bit sources, X and Y , Slepian-Wolf theo-
rem dictates that compression ratesRX ≥ H(X|Y ),RY ≥ H(Y |X)
and RX + RY ≥ H(X, Y ). To facilitate exposition of basic idea,
the virtual correlation channel between two sources is assumed to

be a BSC (Binary Symmetric Channel). In this case, RX ≥ H(p),
RY ≥ H(p) and RX + RY ≥ 1 + H(p), where p is the crossover
probability P (X �= Y |X). We intend to design a symmetric Slepian-
Wolf coding scheme to achieve the following compression rates:

RX = nX+(n−nX )H(p)
n

and RY = n−nX+nXH(p)
n

, where nX

653978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009



Joint Decoder

X

Y

Decoder 1

Decoder 2

X

Y
n bits

n bits

SNS−SWC Encoder SNS−SWC Decoder

H1

H2

(1 − q)n bits

qn bits

SY

qH(p) bits

SX

(1 − q)H(p) bits

Fig. 1. The Architecture of the Syndrome-based Nonuniform Symmetric
Slepian-Wolf Coding Scheme

is the number of source bits directly transmitted by source X. Let

q = nX

n
represent the fraction of transmitted source bits. Then we

have RX = q + (1 − q)H(p) and RY = 1 − q + qH(p).

Thus the rate of LDPC codes, rX and rY , that realize the proposed

symmetric Slepian-Wolf coding scheme should satisfy the following

constraints: rX = kX

n
= n−(n−nX )H(p)

n
= 1 − (1 − q)H(p) and

rY = kY

n
= n−nXH(p)

n
= 1 − qH(p), where kX and kY is the

number of information bits of LDPC codes used to compress source

X and source Y. In the case of q = 1/2, namely the encoder uses
the equal rate to compress source X and Y , we have RX = RY =
1+H(p)

2
and rX = rY = 1 − 1

2
H(p).

A. LDPC Code Design

The LDPC code used in SNS-SWC can be deemed as an LDPC

code for two parallel channels as shown in Fig. 2, where one part

of the code bits are transmitted to the decoder losslessly through

a perfect channel and while the other part of code bits are not

transmitted, their information can be inferred from the perfectly

available complement bits of the other source based on the virtual

correlation channel between them. Let Zi, i = 1, 2, denote the
random variable that is equal to the log-likelihood ratio (LLR) of a

received bit from the ith channel. The LLR distribution of a received
bit can be represented by a single channel by using the two channels.

Namely

PZX
(z) = qPZ1

(z) + (1 − q)PZ2
(z) (1)

PZY
(z) = (1 − q)PZ1

(z) + qPZ2
(z) (2)

Where Z1 is the perfect channel and Z2 is the BSC.

BSC(p)

Channel
Perfect

nX

n − nX

n

Fig. 2. The Illustration of Two Parallel Channels

The proposed LDPC code has similar format to the symmetric

Slepian-Wolf code in [10]. They both are LDPC codes for a nonuni-

form channel [13] which are composed of two parallel channels.

Therefore, the proposed LDPC code profile can be designed using

either the classical single-channel density evolution algorithm [14]

or the density evolution algorithm of nonuniform channels in [13].

The difference between the two approaches is that our approach is

a syndrome-based approach and treats the n source bits as the code
bits and uses the parity check matrix to encode the sources while the

approach in [10] is a parity-based approach and treats the n source
bits as the information bits and uses the generator matrix to encode

the sources.

B. Encoding

The left part of Fig. 1 illustrates the encoder structure of the

proposed symmetric Slepian-Wolf code. Each encoder transmits a

complement set of source bits and the corresponding syndrome bits.

Different rates of two sources are achieved by adjusting the proportion

of source bits to be perfectly transmitted.

C. Decoding

The decoder structure is shown in the right part of Fig. 1. The

decoder includes a separate LDPC decoder for each source X and

Y . The architecture makes it possible to avoid dependent decoding.
Hence, it prevents error propagation that will happen in [9], [8], [11],

[12]. The decoding algorithm in each LDPC decoder is the standard

message passing algorithm. The only difference between the decoding

algorithm in SNS-SWC and the original LDPC decoding algorithm

is the initialization of LLR values. The initial LLR values of all bits

used in the message passing algorithm are set based on the type of

channel to which the bit belongs. The bits passing through the perfect

channel have their LLR values set as ∞ or −∞. The LLR values
of the bits passing through the BSC(p) channel are equal to either
log 1−p

p
or log p

1−p
.

III. SYMMETRIC DISTRIBUTED MULTIVIEW VIDEO CODING
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Fig. 3. The Architecture of The Symmetric Distributed Multiview Video
Coding Scheme

The architecture of the proposed symmetric distributed multiview

video coding (SDMVC) scheme is illustrated in Fig. 3. The proposed

SDMVC uses the SNS-SWC discussed in Section II as the underlying

distributed source coding scheme. We call our symmetric multiview

video coding scheme SDMVC-SNS. Let IL = {IL1
, IL2

, · · · , ILn
}

and IR = {IR1
, IR2

, · · · , IRn
} be the left and right stereo video

sequences, respectively. The frames of both left and right video

sequences are first quantized and intra-coded as the H.264 I-frames.

Then the higher bit planes of residual DCT coefficients are coded

by the H.264 entropy encoder. The lower bit planes of the residual

DCT coefficients are compressed by the SNS-SWC introduced in

Section II. At the decoder, the higher bit planes of DCT coeffi-

cients are first used to construct the low quality frames ˆILi
and

ˆIRi
, i = 1, 2, · · · , n. Then a rough disparity map is estimated from

the reconstructed low quality frames. The pixel correspondence can

be inferred from the disparity map and then the side information Is
Li

and Is
Ri
for ILi

and IRi
(i = 1, 2, · · · , n) can be estimated. Finally

the lower bit planes can be decoded by using the side information
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and the higher bit planes. We will elaborate on the details of the

algorithms below.

A. Handling Pixel Incorrespondence at The Encoder

left image right image

Corresponding Pixel Regions

B K U

QPhQPlQPl

U K B

QPlQPlQPh

wBwB

Fig. 4. Handling Pixel Incorrespondence at The Encoder

As we know from the architecture of SNS-SWC elaborated in

Section II, the decoding process of SNS-SWC is essentially two sep-

arate asymmetric Slepian-Wolf decoding procedures. This property

makes it possible for our scheme to handle the bit incorrespondence

at the encoder while other approaches such as [9], [8] will fail. The

output of the SNS-SWC composes of two parts, syndrome bits and

a subset of the source bits. The aim of the SNS-SWC decoder is

to recover the unknown part of source bits. The unknown source

bits can be recovered correctly if we can successfully estimate the

side information and then calculate the correct initial LLR values

for those unknown source bits. We use Fig. 4 to illustrate how

we carefully design our SDMVC-SNS encoder to handle the pixel

incorrespondence problem at the encoder. For easy exposition, we

assume that there is only horizontal disparity between the left and

right image and the maximal disparity is dmax. Pixels in the left

or right frame are partitioned into 3 regions: boundary pixel region

(B), known pixel region (K) and unknown pixel region (U ). Lower
bit planes of pixels in the region K and U are coded by SNS-SWC.
Pixels in the region B are not used in Slepian-Wolf coding since they
can be occluded with a very high probability and thus can not find

corresponding pixels in the other image. The width of the region B,
wB , should be greater than dmax. In addition, since a macroblock is a

basic coding unit in H.264, wB should be divided by the macroblock

width (16 pixels). Since the corresponding pixels for pixels in the

region U of an image are located in the region B and K of the other
image which are known at the decoder, the side information for pixels

in the region U can be estimated. Thus the bit planes for pixels in
region U can be recovered even though the SNS-SWC encoder is
oblivious to the pixel correspondence information between the left

and right image.

B. Multi-Level Bit Plane Slepian-Wolf Coding

For each 4x4 block in H.264, its residual pixel values are

transformed by DCT and quantized. The number of bit planes for

quantized DCT coefficients in H.264 is essentially controlled by the

quantization parameter (QP ). Suppose that k lower bit planes are
coded by the SNS-SWC. Quantization step size in H.264 doubles for

every increment of 6 in QP [15]. Given two quantization parameters,

QPl and QPh, let QPl = QPh − 6k, we can use them to quantize
the DCT coefficients and get the lower k bit planes that are encoded
by SNS-SWC.

As shown in Fig. 4, QPh is used to quantize pixels in the region

B and K and QPl is used to quantize pixels in the region U . For a
4x4 block, let c denote its original pixel values and Rp be its intra-

predicted pixel values. The unquantized residual coefficients, R, are
equal to c − Rp. Thus the quantized residual coefficients, Rq , are

Q(DCT (R), QP ), where Q() is a quantization function andDCT ()
is the discrete cosine transform function. At the decoder the recon-

structed residual coefficients, R̂c, are R̂c = IDCT (IQ(Rq, QP )),

where IQ() is an inverse quantization function and IDCT () is an
inverse discrete cosine transform function. The reconstructed pixel

values, ĉ, are ĉ = Rp + R̂c. Rp is predicted from the reconstructed

neighbor block, ĉ, at the encoder. To reduce the overhead bits as
much as possible and improve the compression performance, we use

the following method to encoded the lower bit planes. First, for each

4x4 block, the residual coefficients, R, are quantized by QPl to

get Rl
q . The lower bit planes of Rl

q are extracted to calculate the

syndrome bits which are transmitted to the decoder. For pixels in

the region K, the lower bit planes of Rl
q need not be separately

entropy coded since the Rl
q for blocks in the region K can be

entropy coded by using the standard H.264 entropy coding method.

In this way, we avoid using more overhead bits to encode the lower

bit planes of pixels in the region K. For pixels in the region U ,
the lower bit planes of Rl

q need not be transmitted and are simply

discarded. One critical point worthy of note is that the method

to reconstruct the approximation of the original pixel value, ĉ, is
changed to ĉ = Rp + IDCT (IQ(bitshift(Rl

q,−k), QPh)) instead
of ĉ = Rp + IDCT (IQ(Rl

q, QPl)) used in H.264 I frames, where
bitshift() is a bit shift function. The reason is that the encoder has
to pretend to not know the lower bit planes of Rl

q in the region U and
can use only the higher bit planes, which is known at both encoder

and the decoder, to guarantee that the decoder is able to recover the

same ĉ as that in the encoder.

C. Disparity Estimation and Side Information Generation

The region-tree based stereo matching algorithm [16] is used in

the decoder to estimate the disparity map between two stereo video

sequences. Once we have the disparity map, the side information

can be generated by warping the other frame, for example, Is
Li

=
warp(IRi

, Di), where Di is the disparity map between two frames,

ILi
and IRi

. However, not every pixel has a matched pixel due to

occlusion. For occluded pixels, we use their neighbor pixel values

to estimate their real pixel values. Denote the intra-predicted I-frame

as Ip

Li
and Ip

Ri
. The side information of the DCT coefficients in

the region U can be calculated by transforming and quantizing the
residual frame Is

Li
−Ip

Li
for the left stream or Is

Ri
−Ip

Ri
for the right

stream.

D. LDPC Code Design

The capacity-approaching LDPC codes need to be designed for

the virtual correlation channel of bit planes between two correlated

coefficients, X and Y . Let bj
i (i = 1, 2, · · · , n, j = X, Y ) denote

the ith bit plane of X or Y . The virtual correlation channel between
the ith bit plane can be modeled by the conditional probability mass
function P (bX

i |bX
i−1, · · · , bX

1 , bX
o , Y ). We use a Gaussian channel to

approximate the virtual correlation channel between two correlated

bit planes. Thus the LDPC code profile for the nonuniform channel

that is comprised of a perfect channel and a Gaussian channel is

designed by using the Differential Evolution method [14].

E. SNS-SWC Decoding

To successfully decode the symmetric Slepian-Wolf code and

recover the lower bit planes of pixels in region U , we need to estimate
the initial LLR value of each bit plane of unknown pixels. The most

significant bit planes are decoded first and they are used to help

decode the least significant bit planes. Suppose that bX
0 , bX

1 , · · · , bX
i−1

are known i − 1 higher bit planes. To decode an ith bit plane, we

need to calculate the value of log
P (bX

i
=0|bX

i−1
,··· ,bX

1
,bX

0
,Y )

P (bX

i
=1|bX

i−1
,··· ,bX

1
,bX

0
,Y )
, which

can be estimated based on the joint statistics of the previous decoded

frames.
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IV. EXPERIMENTAL RESULTS

We use the Y-component of the 1024x768 Microsoft ”Breakdance”

multiview video sequence [17] to evaluate the performance of our

symmetric distributed multiview video codec. Only video streams

from two central views, camera 4 and camera 5, are used. The

width of the region B, wB , is set to 32. We use 10 frames in our

experiments. The number of bit planes coded by SNS-SWC is 2. In

the experiments, we only consider the symmetric rate allocation case

where each video stream has equal rate since the symmetric case is

practically more interesting.

We vary the quantization parameters in H.264 to evaluate the

performance of the proposed SDMVC. The results are also compared

with separate H.264 coding (H.264) and asymmetric Slepian-Wolf

coding (ASWC) that uses LDPC codes optimized for a Gaussian

Channel. Table I shows the sum bit rates of different coding methods.

All three coding schemes have the same peak signal noise ratio

(PSNR) when the same quantization parameter is used.

TABLE I
SUM BIT RATE FOR DIFFERENT CODING SCHEMES (KBPS)

Coding Schemes H264 I Frames SDMVC-SNS ASWC
QPl = 16 62003.7 66900.9 66894.8
QPl = 10 115889.9 115206.2 114632.8
QPl = 4 171124.8 168354.4 167514.3

As shown in Table I, in the low-rate case (QPl = 16), SDVMC-
SNS cannot save any bits from H.264 I frames. This is because there

is not much correlation after residual coefficients are quantized using

a high quantization parameter. The asymmetric distributed multiview

video coding scheme in [5] produces the similar results. In the high-

rate case (QPl = 4, 10), SDVMC-SNS can save 1.62% and 0.59%
of total bit rate, respectively. The higher the bit rate, the higher

the saving of the total bit rates. This is expected since there is a

higher correlation between the residual coefficients of two stereo

video streams in the high-rate case. The performance of SDMVC-

SNS is consistently inferier to the ASWC. This indicates that there

is still significant room to improve the LDPC code design.
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Fig. 5. Bit Ratio between Two Stereo Video Sequences, QP = 10.

Fig. 5 shows the rate ratio,
rLi

rRi

, of the left video stream and the

right video stream in both H.264 and SDMVC-SNS when QP = 10.
Similar results are attained when the other quantization parameter is

used. The ratio measures how close the bit rate of two video streams

are in both H.264 and SDMVC-SNS coding schemes. It is evident

from the figure that the two streams have almost equal rate. Thus

the SDMVC-SNS can achieve the design objective of symmetric rate

allocation in two streams.

V. CONCLUSIONS

In this paper, we first propose a syndrome-based symmetric

Slepian-Wolf coding scheme that can achieve the whole Slepian-Wolf

region. A generic framework for the symmetric distributed multiview

video coding is then put forward. To the best of our knowledge, this

is the first work to address the symmetric distributed multiview video

coding problem with the help of a symmetric distributed source code.

Our preliminary results show that the proposed SDMVC demonstrates

a very promising result and moderate rate saving from H.264 I frames

can be achieved in the high-rate case.
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