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ABSTRACT

Motion scalability is designed to improve the coding efficiency of a
scalable video coding framework, especially in the medium to low
range of decoding bit rates or spatial resolutions. In order to fully
benefit from the superiority of motion scalability, a rate-distortion
optimized bitstream extractor, which determines the optimal motion
quality layer for each decoding scenario, is required. In this paper,
the determination process first starts off with a brute force search-
ing algorithm. Although guaranteed by the optimal performance
within the search domain, it has high computational complexity.
Two properties, i.e. the monotonically non-decreasing property and
the unimodal property, are then derived to accurately describe the
rate-distortion behavior of motion scalability. Based on these two
properties, modified searching algorithms are proposed to reduce the
complexity by a factor up to 5.

Index Terms— Bitstream extractor, motion scalability, rate dis-
tortion optimization, scalable video coding

1. INTRODUCTION

A typical scalable video coding (SVC) infrastructure, as shown in
Fig. 1, is composed of three main building blocks, i.e. the encoder,
the decoder, and the bitstream extractor. Compared to a conventional
non-scalable video codec, the decoder in SVC is allowed to demand
a variety of decoding specifications, including different combina-
tions of spatial, temporal, and quality layers. It is the main task of
an SVC bitstream extractor to fulfill those requests by properly trun-
cating the scalable bitstream.

The designing criteria for a generic SVC bitstream extractor can
be rather trivial. In the SVC standard [1], for example, each network
abstraction layer unit (NALU) belongs to a certain temporal, spatial,
and quality layer and is tagged accordingly through high level syn-
tax, temporal id(T ), dependency id(D), and quality id(Q). In
the case where a specific spatio-temporal resolution is explicitly in-
dicated by T = Tt and D = Dt, the extraction can be easily done
by dropping all NALUs with T > Tt and D > Dt. If, however,
there is an additional bit rate constraint imposed, which the remain-
ing NALUs fail to meet, some NALUs withQ > 0 have to be further
discarded. This is the case where different designing principles come
into effect, among which the rate-distortion (RD) optimized extrac-
tion is the most popular one [2]. The overall idea is to retain those
NALUs with higher RD contribution and therefore to optimize the
quality under the rate constraint.

When motion scalability [3] is taken into consideration, the bit-
stream extractor has an additional requirement, i.e. optimal bit al-
location among motion and texture [4]. In this paper, we focus on
the case where the decoding spatio-temporal resolution (T andD in
the SVC standard) is pre-specified and fixed. Under this setup, one

Fig. 1. Scalable video coding.

of the motion quality (MQ) layers, combining with the correspond-
ing texture information, will provide the best reconstructed quality.
As the target bit rate varies, however, the optimal MQ layer also
changes accordingly. The optimal MQ layer as a function of decod-
ing bit rate, if not provided by the encoder, will be determined by
the extractor. Based on this function, the adapted bitstream is guar-
anteed with the best decoding quality throughout all possible rates,
for this particular spatio-temporal resolution.

The remainder of the paper is organized as follows. In Section
2, a model-based theoretical justification of motion scalability is pre-
sented. It will be clear how and when motion scalability can benefit
the coding efficiency. In Section 3, we propose three approaches
for optimal bitstream extraction, i.e. the brute force, model-assisted,
and model-based methods. The properties that facilitate more effi-
cient extractor designs are also derived here. Finally, experimental
results are provided in Section 4 to verify the effectiveness of our
new designs .

2. THEORETICAL JUSTIFICATION OF MOTION
SCALABILITY

Motion information has traditionally been coded losslessly due to the
complicated impacts that a corrupted motion may bring to the recon-
structed video quality. In this section, we briefly review somemodels
that have been developed to describe the behavior of motion scala-
bility. Combined with the exponential distortion-rate model from the
source coding theory, we are able to derive a beneficial condition for
motion scalability.
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2.1. Linear Motion Distortion Model

The first work analyzing the distortion introduced by MV quanti-
zation is done by Secker [5]. Under a series of assumptions and
approximations, he proposed a linear motion distortion model, as
shown in (1), which describes the linear relationship (with slope Ψ)
between the squared MV error, ||δ||2, and the corresponding mean
squared MC error, or simply known as the motion distortion, Dm.

Dm ≈ Ψ||δ||2 (1)

Note that Ψ is the isotropic motion sensitivity factor, averaged over
all MV errors with magnitude ||δ||, of the reference picture. It is a
function of the energy spectral density of the corresponding refer-
ence picture, which is highly content dependent.

2.2. Additive Distortion Model

In a generic video coding framework, the MC operation is followed
by the texture/residual transform coding and quantization. In the
case where motion coding is non-scalable, the total distortion of the
reconstructed picture,D, can be simply described by the texture dis-
tortion, Dt, which is introduced by the texture quantization opera-
tion.

However, if motion scalability is taken into consideration, the
motion distortion may also contribute to the total distortion. The ad-
ditive distortion model [5] states that the total distortion is the sum-
mation of the motion distortion and the texture distortion. The as-
sumption behind is that the motion error, m[n] − m∗[n], and the
texture error, t[n] − t∗[n], are orthogonal to each other.

Dm + Dt =
1

N1N2

(||m[n] − m∗[n]||2 + ||t[n] − t∗[n]||2)

=
1

N1N2
||m[n] + t[n] − c[n]||2 = D,

(2)

where c[n] = m∗[n] + t∗[n] is the original picture without distor-
tion.

2.3. Beneficial Condition for Motion Scalability

Although the true distortion-rate model is data dependent and com-
plicated, a simpler model has been derived and used for video texture
coding [6].

Dt(Rt) = σ2
t exp

(
−Rt

at

)
, (3)

where Rt is the texture bit rate and σt and at are content dependent
parameters. This model provides an explicit way to quantify the
texture distortion,Dt, according to the texture bit rate,Rt. A similar
exponential model can also be applied to MV coding, making the
squared MV error, ||δ||2, an exponential function of the motion bit
rate, Rm. Therefore, (1) can be expressed as follows.

Dm(Rm) = Ψσ2
m exp

(
−Rm

am

)
(4)

Applying the additive distortion model in (2), the total distortion-rate
model becomes

D(R) = Dm(Rm) + Dt(Rt) = Dm(Rm) + Dt(R − Rm), (5)

where R = Rm + Rt is the total decoding bit rate.
Consider the following two cases where the first one is coded

with lossless motion, i.e. D∗(R) = Dt(R − R∗
m), and the second

Table 1. Extractor RD table (FOREMAN @ CIF 30 fps)
Decoding Bit Rate (kbps)

MQ Layer 128 256 384 512 640 768 896 1024

0 26.97 29.73 31.26 32.17 32.73 33.19 33.40 33.53
1 - 29.9 31.76 32.91 33.77 34.36 34.70 34.97
2 - - 31.29 32.73 33.86 34.64 35.11 35.75

Table 2. Effective rate information (FOREMAN @ CIF 30 fps)
MQ Layer Effective Bit Rate Range (kbps)

0 0 - 192
1 192 - 576
2 576 - 1024

one is coded with scalable motion (with MQ layer a), i.e. Da(R) =
Dm(Ra

m) + Dt(R − Ra
m), where Ra

m < R∗
m. The condition for

scalable motion to outperform lossless motion is simply Da(R) <
D∗(R), or

Dm(Ra
m) < Dt(R − R∗

m) − Dt(R − Ra
m). (6)

As can be derived from (3), the right hand side of (6) is a monoton-
ically decreasing function of R. As a consequence, the satisfaction
of (6) can be expected for a relatively smaller R, given a fixed Ra

m.

3. OPTIMAL BITSTREAM EXTRACTOR DESIGN FOR
MOTION SCALABILITY

3.1. Brute Force Method

In the brute force method, the same video bitstream is decoded mul-
tiple times at the same bit rate, during each time a different MQ
layer is applied. The same process is repeated for all decoding bit
rates of interest, resulting in an extractor RD table, as shown in Ta-
ble 1. Note that the entry marked with “-” indicates that the target
bit rate is too low to be decodable. The entry marked with a bold
face number reflects the best MQ layer at its decoding bit rate. A
simplified table, as shown in Table 2, records the effective bit rate
range for each MQ layer. A such table, one for each spatio-temporal
resolution and GOP, contains all the required information for optimal
bitstream adaptation. These tables are not large and can be efficiently
compressed for transmission.

The accuracy of the recorded effective rate range is seriously af-
fected by the number of testing bit rate in the brute force method.
As observed in Table 2, the range boundary is chosen as the average
of two contiguous testing rates. The more testing bit rates, the bet-
ter extractor performance, and, of course, the more computational
burdens.

3.2. Model-Assisted Method

Two properties can be observed in Table 1. First, the optimal MQ
layer is a monotonically non-decreasing function of the decoding bit
rate. Second, the decoding PSNR at a fixed bit rate is an unimodal
function of the MQ layer. With the help of those models built in Sec-
tion 2, we will now prove that these two properties follows directly.
The advantage of knowing these properties is to efficiently save some
trials that are irrelevant to the final extractor table, as shown in Table
2.
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Table 3. Critical rate information (FOREMAN @ CIF 30 fps)
MQ Layer Critical Rate (kbps)
0 - 1 172
1 - 2 600

3.2.1. Monotonically Non-Decreasing Property

Suppose at a certain decoding bit rate R0, the minimal distortion is
achieved with MQ layer i, which occupies a motion bit rate Ri

m.

Di(R0) ≤ Dj(R0), ∀j �= i (7)

Given an extra bit rate �R > 0, the difference between the total
distortion using MQ layers i and j becomes,

Di(R0 + �R) − Dj(R0 + �R)

=Ψσ2
m

(
exp

(
−Ri

m

am

)
− exp

(
−Rj

m

am

))

+ σ2
t exp

(
−R0 + �R

at

) (
exp

(
Ri

m

at

)
− exp

(
Rj

m

at

))

≤σ2
t exp

(
−R0

at

) (
exp

(
Ri

m

at

)
− exp

(
Rj

m

at

))
(

exp

(
−�R

at

)
− 1

)

(8)

The inequality in (8) comes directly from (7),(3), (4) and (5). Since
both at > 0 and �R > 0, we have exp (−�R/at) − 1 < 0.
In addition, for those MQ layers j < i, the corresponding mo-
tion bit rates are smaller, i.e. Rj

m < Ri
m. Therefore, we have(

exp
(
Ri

m/at

) − exp
(
Rj

m/at

))
> 0. In summary, the right hand

side of (8) is negative whenever j < i. In other words, ifDi(R0) ≤
Dj(R0), ∀j �= i,

Di(R0 + �R) < Dj(R0 + �R), ∀j < i. (9)

Here we have proven that when the bit rate increases, the best MQ
layer can never decrease, i.e. the monotonically non-decreasing
property. By applying this property, many testing scenarios can be
omitted without sacrificing the extractor performance. In Table 1,
for example, the MQ layer a = 0 does not need to be tested for
decoding bit rates greater than 384 kbps, once we know the best MQ
layer at 384 kbps is a = 1.

Moreover, the monotonically non-decreasing property enables
a simpler alternative to describe Table 2. A series of critical rates,
{Ra,∗|Da(Ra,∗) = Da+1(Ra,∗), a = 0, · · · , A − 2}, can now be
found and recorded. An example is shown in Table 3. Note that
the monotonically non-decreasing property limits the total number
of critical rates to A − 1, where A denotes the total number of MQ
layers.

3.2.2. Unimodal Property

This property states that at a fixed bit rate, the decoding PSNR as
a function of the MQ layer is unimodal, i.e. the decoding PSNR
is monotonically decreasing on both sides of the optimal MQ layer.
This property is especially useful at finding the maximal decoding
PSNR (or minimal decoding distortion). Once a decrease in decod-
ing PSNR is identified, further decreasing with the following MQ
layers can be expected, and thus the actual decoding processes can
be skipped.

The unimodal property can be proved as follows. We focus only
on one side of the total distortion function (of MQ layers) in the
direction of increasing MQ layers. The other side (decreasing MQ
layers) can be proved in a similar manner. First, from (3) and (4), we
know that the first derivatives of both motion and texture distortion
functions, i.e. D′

t(Rt) and D′
m(Rm), are monotonically increas-

ing. Again, suppose at a certain decoding bit rate R0, the minimal
distortion is achieved with MQ layer i.

Dm(Ri
m) + Dt(R

i
t) ≤ Dm(Rj

m) + Dt(R
j
t ), ∀j �= i (10)

According to the mean value theorem, for every j > i, there
exist Rij

m, Ri
m < Rij

m < Rj
m and Rji

t , Rj
t < Rji

t < Ri
t such that

Dm(Ri
m) − Dm(Rj

m) = −�RijD′
m(Rij

m) (11)

Dt(R
j
t ) − Dt(R

i
t) = −�RijD′

t(R
ji
t ) (12)

where�Rij = Rj
m−Ri

m = Ri
t−Rj

t > 0. By taking the difference
of (11) and (12) and plugging back into (10), we have the following
relationship:

D′
m(Rij

m) ≥ D′
t(R

ji
t ) (13)

Similarly, for another MQ layer k > j,

Dm(Rj
m) − Dm(Rk

m) = −�RjkD′
m(Rjk

m ) < −�RjkD′
m(Rij

m)

≤ −�RjkD′
t(R

ji
t ) < −�RjkD′

t(R
kj
t ) = Dt(R

k
t ) − Dt(R

j
t )

(14)

Note that the first and the last inequalities in (14) result directly
from the monotonically increasing characteristic of D′

t(Rt) and
D′

m(Rm), along with the fact that Rij
m < Rjk

m and Rkj
t < Rji

t . The
second inequality comes from (13). The following relationship can
now be concluded. IfDi(R0) ≤ Dj(R0), ∀j �= i,

Dj(R0) < Dk(R0), ∀{j, k|i < j < k}. (15)

In other words, the decoding distortion is monotonically increasing
(decreasing) on the increasing (decreasing) side of the optimal MQ
layer. This proves the unimodal property.

3.3. Model-Based Method

The bisection method for approaching the critical rates is based on
the monotonically non-decreasing property. Despite of being more
efficient and more accurate than the brute force method, it does not
explicitly make full appreciation of the distortion-rate models. Ex-
perimental results have shown that, for simplicity, the total distortion
function in (5) can be well approximated by removing the motion
contributions (both motion distortion and motion rate), i.e.

D(R) ∼= Dt(R) = σ2
t exp

(
−R

at

)
. (16)

Since the distortion-rate plot is usually depicted in a logarithmic
scale using PSNR representations, we have

PSNR(R) = 10 log10

(
2552

D(R)

)
∼= αR + β. (17)

Note that (α, β) can be estimated to reflect the individual charac-
teristic of the video content from at least two tested points on the
PSNR-rate curve. Because the actual PSNR-rate curve is approxi-
mated using a line with slope α and offset β, this approach is called
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Table 4. Extractor comparison with discrete testing rates
BUS FOOTBALL FOREMAN MOBILE

a1 a2 # a1 a2 # a1 a2 # a1 a2 #

CIF BF 3 6 24 3 7 24 2 5 24 2 7 24
30 fps MAPR 3 6 12 3 7 13 2 5 11 2 7 15

MABI 3 6 10 3 7 10 2 5 11 2 7 11

CIF BF 3 7 24 4 - 24 2 6 24 2 - 24
15 fps MAPR 3 7 14 4 - 15 2 6 12 2 - 16

MABI 3 7 11 4 - 10 2 6 10 2 - 10

QCIF BF 4 - 16 7 - 16 3 - 16 3 - 16
30 fps MAPR 4 - 6 7 - 10 3 - 5 3 - 5

MABI 4 - 5 7 - 5 3 - 6 3 - 6

QCIF BF 6 - 16 - - 16 4 - 16 4 - 16
15 fps MAPR 6 - 9 - - 11 4 - 6 4 - 6

MABI 6 - 6 - - 5 4 - 5 4 - 5

QCIF BF - - 16 - - 16 8 - 16 6 - 16
7.5 fps MAPR - - 12 - - 9 8 - 13 6 - 10

MABI - - 5 - - 3 8 - 6 6 - 6

the linear model method. In the linear model method, each itera-
tion for determining an estimate of Ra,∗ requires at least four op-
erating points. From one iteration to the next, two of these op-
erating points should be updated with (R̂a,∗, PSNRa(R̂a,∗)) and
(R̂a,∗, PSNRa+1(R̂a,∗)) , where R̂a,∗ is the linear model estimate
of Ra,∗.

4. EXPERIMENTAL RESULTS

The evaluation of the proposed bitstream extractors for motion scal-
ability will be performed on the wavelet-based SVC framework [3].
Test video sequences include BUS, FOOTBALL, FOREMAN, and
MOBILE. The format of these input sequences is CIF at 30 fps. The
total number of MQ layers is limited to A = 3. For each decoding
spatio-temporal resolution, two experiments will be performed.

In the first experiment, a discrete set of (equally spaced and in-
dexed from 1 to 2N ) bit rates is tested and the effective range of
each MQ layer will be determined. We compare the brute force (BF)
method with the model assisted (MA) method that uses two search-
ing methods, i.e. progressive search (MAPR) and bisection search
(MABI). The searching order of MAPR is from the lowest bit rate to
the highest one. On the other hand, the order of MABI starts from the
middle bit rate and recursively bisects the lower and upper halves.

The results are shown in Table 4 for N = 3. The columns
labeled with “ai” denote the index (from 1 to 2N ) of the rate segment
in which the optimal MQ layer switches from i−1 to i. The columns
labeled with “#” denote the number of decoding times required to
complete the extractor information table, as shown in Table 2. Note
that the number of decoding times for the BF method is always 2NA.

As observed from Table 4 (columns ai), both MAPR and MABI
provide exactly the same results as BF, which is guaranteed the
best one in the discrete testing rate experiment. At the same time,
both MAPR and MABI save a tremendous amount of computations
over BF (from columns #). This result verifies the effectiveness
of the models built in Section 2, from which the monotonically
non-increasing property and the unimodal property are derived.
Moreover, the advantage of MABI over MAPR on reducing the
complexity is also verified throughout various testing sequences and
decoding scenarios.

In the second experiment, a search is conducted for the criti-

Table 5. Extractor comparison with critical rates
BUS FOOTBALL FOREMAN MOBILE

a1 a2 # a1 a2 # a1 a2 # a1 a2 #

CIF MABI 216 816 26 336 880 22 172 600 29 148 832 27
30 fps MBLM 215 816 15 337 882 20 172 599 23 148 831 23

CIF MABI 138 480 27 224 - 24 112 384 12 96 - 22
15 fps MBLM 139 481 25 224 - 24 118 384 9 93 - 15

QCIF MABI 240 - 9 400 - 9 180 - 14 176 - 10
30 fps MBLM 244 - 13 397 - 7 180 - 14 166 - 12

QCIF MABI 162 - 14 - - 15 124 - 11 120 - 9
15 fps MBLM 163 - 8 - - 15 124 - 7 117 - 9

QCIF MABI - - 9 - - 11 118 - 12 84 - 10
7.5 fps MBLM - - 9 - - 11 119 - 10 84 - 14

cal rates, i.e. {Ra,∗|a = 0, · · · , A − 2}. For practical reasons,
the search stops whenever |PSNRa(R̂a,∗)−PSNRa+1(R̂a,∗)| ≤
0.01 dB. The approximate critical rates {R̂a,∗} are recorded in the
extractor information table. We compare the model-assisted method
using bisection search (MABI) with the model-based method using
the linear model (MBLM). The results are shown in Table 5. Note
that the columns marked with ai now denote the approximated criti-
cal rates (in kbps) at which MQ layers i − 1 and i produce the same
PSNR. As observed from Table 5, MBLM demonstrates better or
equal performances than MABI in about 85% of the cases.

5. CONCLUSION

With the rapid development of SVC and motion scalability, a bit-
stream extractor aiming at determining the optimal motion quality
layer in the rate-distortion sense is essential. In this paper, several
algorithms have been proposed to solve this problem, with the de-
signing principle to reduce the complexity. In particular, the linear
model based approach using the critical rate representation achieves
the lowest complexity, without sacrificing the optimality. Experi-
mental results have verified the effectiveness of the proposed meth-
ods, which are mainly based on some mathematical models on the
rate-distortion characteristics of a compressed video bitstream.
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