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ABSTRACT

This work proposes a fast decision algorithm in pattern classification
based on Gaussian mixture models (GMM). Statistical pattern clas-
sification problems often meet a situation that comparison between
probabilities is obvious and involve redundant computations. When
GMM is adopted for the probability model, the exponential function
should be evaluated. This work firstly reduces the exponential com-
putations to simple and rough interval calculations. The exponential
function is realized by scaling and multiplication with powers of two
so that the decision is efficiently realized. For finer decision, a re-
finement process is also proposed. In order to verify the significance,
experimental results on TI DM6437 EVM board are shown through
the application to a skin-color extraction problem. It is verified that
the classification was almost completed without any refinement pro-
cess and the refinement process can proceed the residual decisions.

Index Terms— Pattern classification, Gaussian mixture model,
Bayesian decision, Efficient implementation, Skin-color extraction

1. INTRODUCTION

Pattern classification is a technique that automatically identifies an
observation target based on data acquired by sensors and meets a
wide range of applications such as product inspection, medial diag-
nosis, intelligent vehicles and surveillance systems [1]. Some classi-
fiers assume probability models for observed data, and identifies the
class according to Bayesian decision rule.

Gaussian distribution is a popular model and easy to handle for
the mathematical beauty. The distribution is, however, not suitable
for modeling a multi-modal distribution, and the application is lim-
ited. This problem can be solved by adopting a Gaussian mixture
model (GMM), which is a linear combination of multiple Gaussian
distributions. GMM is successfully used for several applications
such as skin-color extraction and speech recognition [2–4]. The
parameter estimation problem has also been studied by several re-
searchers [5–7]. One of the disadvantages of GMM is the com-
putational complexity. Unlike Gaussian distributions, the compar-
ison among GMMs cannot exclude the exponential function even if
the logarithm is taken. Increasing the computational complexities
becomes obstacle to the applications requiring high speed and low
power consumption. For example, wireless sensor networks demand
low power classifiers in their sensor nodes.

In the article [8], the exponential function is computed with a
piecewise linear approximation. Although the approximation is sim-
ply computed, wrong classification is possibly made when the pre-
cision is low. On the other hand, higher precision requires more
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operations and memories. It is true for other approaches such as
Maclaurin expansion and CORDIC [9].

This work proposes to operate the exponential function by intro-
ducing simple interval calculations and an adaptive control of com-
putational precision. In a typical classification problem, precise op-
erations are required only for subtle cases and most are obvious. The
proposed method replaces the exponential function to scaling and
multiplication with powers of two, and the decision if the compari-
son is obvious is efficiently calculated. A refinement process is also
proposed for subtle cases, where the computational accuracy is suc-
cessively refined.

2. GMM-BASED CLASSIFICATION

This section reviews Bayesian decision rule and GMM.

2.1. Bayesian decision rule

Bayesian decision rule enables us to identify the class of an observed
datum or feature vector x provided possible classes are known a pri-
ori. Given a feature vector x, Bayesian decision scheme compares
the posterior probabilities of every class, i.e. P[c =Ck|x], and then
select the class of the highest probability. This decision is known to
give the smallest error rate [1, 7]. Since the Bayesian theorem tells
us P[c|x] ∝ p(x|c)P[c], the Bayesian decision can be reduced to the
evaluation with the following discriminant function:

fk,�(x) = p(x|Ck)P[Ck]− p(x|C�)P[C�]. (1)

If fk,�(x) > 0, then Class C� is dropped from the candidates. If
fk,�(x) < 0, then ClassCk remains nominated.

2.2. Gaussian mixture model (GMM)

Equation (1) requires us to know the conditional density p(x|c) a
priori. This work assumes GMM for p(x|c) [7]. Let N (x|μ,Σ) be
the density of Gaussian distribution. N (x|μ,Σ) is defined by

N (x|μ,Σ) =
1

(2π)
D
2 |Σ| 12

exp
{
−1
2
(x−μ)TΣ−1(x−μ)

}
, (2)

where D is the number of variables, μ and Σ are a D×1 mean vec-
tor and D×D covariance matrix, respectively. Then, the density of
GMM,M (x|Θ), is represented by

M (x|Θ) =
N−1
∑
n=0

αnN (x|μn,Σn), (3)

where Θ is a set of parameters, that is Θ = {{αn},{μn},{Σn}}, N
is the number of Gaussian distributions and αn is the mixture ratio
of the n-th distribution. The mixture ratios satisfy the conditions
∑N−1n=0 αn = 1 and 0≤ αn ≤ 1.
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Fig. 1. Case that the interval is used for classification

2.3. Discriminant function for GMM

Since the probability of x given c, i.e. p(x|c), is assumed to be GMM
in Eq. (3), Eq. (1) is represented by

fk,�(x) = gk(x)−g�(x), (4)

gk(x) =
Nk−1
∑
n=0

Kk,n exp(−zk,n(x)), (5)

where

zk,n(x) =
1
2
(x−μk,n)

TΣ−1k,n(x−μk,n), (6)

Kk,n =
P[Ck]αk,n

(2π)
D
2 |Σk,n|

1
2
, (7)

where {αk,n}, {μk,n} and {Σk,n} are parameter sets of GMM for
Class Ck [8]. Since the covariance matrix Σk,n is positive definite,
function zk,n(x) obtained by the quadratic form in Eq. (6) is guar-
anteed to be non-negative. As well, the conditions on αk,n guaran-
tee for constant Kk,n to be non-negative. Therefore, Eq. (5) must be
non-negative. For the sake of convenience, function zk,n(x) is simply
represented by variable zk,n in the following discussion.

3. CLASSIFICATIONWITH INTERVAL COMPUTATION

On the assumption that a feature vector x is drawn from a Gaus-
sian distribution, the Bayesian decision is achieved by comparing
scaled exponential functions, i.e. K exp(−z), where K and z are non-
negative constant and variable. Usually, the comparison is reduced
by taking their logarithms, i.e. lnK exp(−z) = lnK−z, where lnK is
a constant. Note that the classifier does not require any exponential
function. On the other hand, it is not true for GMM.

In this section, we propose a simple interval calculations and
an adaptive control of computational precision for the exponential
operatons in GMM. The following facts are used in our proposal.

• Required result is only the sign of Eq. (4).
• Constant Kk,n and variable zk,n in Eq. (5) are all non-negative.

3.1. Initial decision process

First of all, we give an inequality which represents an interval cover-
ing the function in Eq. (5) with integer powers of two. From the fact
that exp(−z) = 2−z log2 e and z≥ 0, we have the relation

2−(�z log2 e�+1) < exp(−z)≤ 2−�z log2 e�, (8)

where �x� is the integer part of x. Furthermore, Eq. (8) leads

N−1
∑
n=0

Kn2−(�zn log2 e�+1) <
N−1
∑
n=0

Kn exp(−zn)≤
N−1
∑
n=0

Kn2−�zn log2 e�.

(9)
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Fig. 2. Case that the interval computation is insufficient (top). An
expected effect of the refinement process (bottom).

The lower and upper bound of this interval is calculated only by
scaling constant Kn with an integer power of two and accumulating
the results. If Kn is in a fixed-point representation, this operation is
executed by the right bit-shift. If it is in a floating-point one, the
index decrement realizes the computation. Figure 1 illustrates a case
that the classC0 is clearly delated from nominations with the interval
computation, where we define

gupperk (x) =
Nk−1
∑
n=0

Kk,n2−�zk,n log2 e�, (10)

glowerk (x) =
Nk−1
∑
n=0

Kk,n2−(�zk,n log2 e�+1) =
1
2
gupperk (x). (11)

Note that the lower bound is half the upper one and this fact is im-
portant in terms of computational cost. Each interval guarantees to
include the true value of gk(x). The above decision process makes it
possible to avoid precise calculations.

3.2. Refinement process

When the probability of Ck given x close to another, the initial de-
cision process confuses. In the followings, we propose a refinement
process for successively improving the computational precision and
narrowing the interval. Figure 2 illustrates a case that the decision is
unclear from the interval and the refinement process improves each
interval which includes the true value gk(x).

Let us begin with the relation

exp(−z) = 2−�z log2 e�2−β = 2−(�z log2 e�+1)2(1−β ), (12)

where β is the fractional part of z log2 e and in the range 0≤ β < 1.
Representing the i-th fractional bit of β as β [i] ∈ {0,1}, we have

β =
L

∑
i=1

β [i]2−i, (13)

where L denotes the number of fractional bits. Furthermore, defining
T [i] = 2−2−i , we obtain the following expressions:

2−β = 2−∑Li=1 β [i]2−i =
L

∏
i=1
2−β [i]2−i =

L

∏
i=1
T [i]β

[i]
, (14)

2(1−β ) = 22
−L L

∏
i=1
2β̄ [i]2−i = T [L]−1

L

∏
i=1
T [i]−β̄ [i]

, (15)

where β̄ [i] is the bit inverse of β [i].
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Then, let us consider an update process for refining the interval.
According to Eq. (15), the upper and lower bound in Eqs. (10) and
(11) are improved by using the following bounds for i≥ 1:

gupperk (x, i) =
Nk−1
∑
n=0

hupperk,n (x, i), (16)

glowerk (x, i) =
Nk−1
∑
n=0

hlowerk,n (x, i), (17)

where

hupperk,n (x, i) =

{
Kk,n2−�zk,n log2 e�, i= 0
Kk,n2−�zk,n log2 e�∏i

j=1T [ j]β
[ j]
k,n , i≥ 1 (18)

hlowerk,n (x, i) =

{
Kk,n2−(�zk,n log2 e�+1), i= 0
Kk,n2−(�zk,n log2 e�+1) ∏i

j=1 T [ j]−β̄ [ j]
k,n , i≥ 1

(19)

where β [i]
k,n denotes the i-th fractional bit of zk,n log2 e.

For i≥ 1, we have the relations
hupperk,n (x, i) = hupperk,n (x, i−1)T [i]β

[i]
k,n , (20)

hlowerk,n (x, i) = hlowerk,n (x, i−1)T [i]−β̄ [i]
k,n . (21)

Since the inequalities

Kk,n exp(−zk,n)≤ hupperk,n (x, i)≤ hupperk,n (x, i−1), (22)

hlowerk,n (x, i−1)≤ hlowerk,n (x, i)≤ Kk,n exp(−zk,n), (23)

hold, Eqs. (16) and (17) become closer to the true evaluation gk(x)
as i increases. Consequently, the intervals are refined as shown in
Fig. 2. Although both of Eqs. (20) and (21) include multiplications,
one refinement process requires only either of T [i] or T [i]−1 since
β̄ [i]
k,n is the bit inverse of β [i]

k,n. Both of T [i] and T [i]−1 can be calcu-
lated before and stored in look up tables (LUTs).

3.3. Termination

The refined bounds approach to a true value on a principal by con-
tinuing the update operations. However, in an actual situation, com-
putations must be completed in a finite bit accuracy. As an option,
we provide a termination process. Let L be the maximum number of
refinement process. Then, the average value of the bounds may be a
good approximation of gk(x). The average is obtained by

gpseudok (x) =
1
2

{
glowerk (x,L) ·T [L]−1+gupperk (x,L)

}
. (24)

Then, gk(x) in Eq. (5) can be replaced by g
pseudo
k (x) for a pseudo

decision. Note that T [L]−1 ≈ 1 for a large L.

3.4. Proposed algorithm

Let us summerize the procedures described from 3.1 to 3.3, where
we represent 2−ix as x� i and assume a two class case.
Step 1 Calculate Eqs. (6) and (7) for all k ∈ {0,1} and n =

0,1, · · · ,Nk−1. Then, obtain
hupperk,n = Kk,n� �zk,n log2 e�,

hlowerk,n = hupperk,n � 1,

βk,n = frac(zk,n log2 e),

and set i= 0, where frac(x) is the fractional part of x.

Step 2 Calculate the following equations for all k ∈ {0,1}:

gupperk =
Nk−1
∑
n=0

hupperk,n

glowerk =

{
gupperk � 1, i= 0
∑Nk−1n=0 h

lower
k,n , i> 0 .

Step 3 If gupper0 ≤ glower1 , then decide on Class C1 and quit. If
gupper1 ≤ glower0 then decide on ClassC0 and quit.

Step 4 Increment i as i← i+1. If i exceeds the upper limit L, then
go to Step 6.

Step 5 Update the interval for all k ∈ {0,1} and n= 0,1, · · · ,Nk−1.
If β [i]

k,n = 1, then apply

hupperk,n
update←− hupperk,n ·T [i].

Otherwise, apply

hlowerk,n
update←− hlowerk,n ·T [i]−1.

Return to Step 2.
Step 6 Decide the class with the pseudo-function

gpseudok =
1
2

{
glowerk ·T [L]−1+gupperk

}
.

If gpseudo0 < gpseudo1 , then decide on Class C1. Otherwise, de-
cide on ClassC0. Finally, terminate the process.

4. PERFORMANCE EVALUATION

In this section, we verify the significance of the initial decision, and
then evaluate the computational cost of the refinement process.

4.1. Simulation of skin-color extraction

More the initial decision completes the classification, the lower the
computational cost becomes. Let us show some simulation results of
the application to skin-color extraction. The followings summerize
the simulation procedure:

• Claire, a sequence of size 144×176 in YUV format, is used.
• 2×1 feature vector x is defined by theU and V component.
• GMMs are assumed to the skin and non-skin class.
• The first frame is used to train the classifier1.
• The 494-th frame is used as an observed picture.
Figure 3 shows an initial decision result, where the number of

distributions are assumed to be four. It is observed that the initial
decision can almost complete the classification. The ratios of the
completion for different numbers of distributions resulted in

• 99.641% for 2 distributions (N0 = N1 = 2),
• 99.617% for 3 distributions (N0 = N1 = 3),
• 99.515% for 4 distributions (N0 = N1 = 4).

These simulation results tell us that any precise evaluation is not
necessary for the exponential function for over 99.5% of pixels. As
well, we verified that the number of updates in which the decisions
completed in the double precision were 7, 6 and 11 updates for 2,
3 and 4 distributions, respectively. LUTs for T [i] and T [i]−1 may
typically be not expensive since the maximum number of updates L
determines the number of entries.

1EM algorithm was used [7, 10].
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(a) Observation (b) Result with N0 = N1 = 4

Fig. 3. Initial decision results, where the white, black and red region
express the skin, non-skin and undecided region.

Table 1. Average computational time per feature vector for evaluat-
ing Eq. (4) on DM6437 EVM board, where D= 2 and N0 = N1 = 2.
The quadratic form in Eq. (6) consumes around 5.5μs in floating-
point calculations of single precision, which is excluded below.

Type of constant Kk,n Fixed-point Float.-point
Cons. (w. expf()) - 12.44μs
Cons. (w. exp()) - 26.07μs
Props. (L= 0, w.o. Refine.) 1.47μs 2.21μs
Props. (L= 8, w. Refine.) 1.55μs 2.26μs

4.2. Computational cost

Let r[i] be the ratio of progression to the i-th refinement process.
Note that relation 0 ≤ r[i+ 1] ≤ r[i] ≤ 1 holds. Denoting τinit and
τrefine as the time required for the initial decision per feature vector
in Steps 1, 2 and 3 and the time for a refinement process in Steps 5, 2
and 3, respectively, we obtain the average decision time per feature
vector with L refinement processes as

τave = τinit+
L

∑
i=1
r[i]τrefine, (25)

where the termination in Step 6 is omitted for simplicity since it is
optional and less expensive than the refinement process. If τinit is
much less than the time τ required with some existing exponential
implementation, and if the progression ratios r[i] are close to zero,
then some acceleration can be expected since τave ≈ τinit < τ .

For evaluating the computational cost, we implemented the skin-
color extraction on TI DM6437 EVM board. The followings sum-
merize the procedure:

• TI CCS Ver. 3.3 was used as the compiler with the ’Speed
Most Critical’ and ’Function Level’ option.

• Classifiers with standard exponential functions and ones with
our proposal were implemented on the board.

• The 494-th frame of Claire was used as an observed picture,
which was enlarged and converted into NTSC video so that it
can be acquired by the board.

Table 1 summerizes the computational speed of the experimen-
tal results of the UV -based skin-color extraction. The abbreviations
’Cons.’ and ’Props.’ denote the classifiers with the standard func-
tions and the proposed algorithms, respectively. As the standard ex-
ponential functions, we adopted ’expf()’ of single precision and
’exp()’ of double precision from the standard C library. For the

proposal, the results only with the initial decision process (L = 0)
and those with the refinement process up to 8 updates (L = 8) are
given. Two types of representations, i.e. fixed- and floating-point
one, for constant Kk,n are also compared. Since the refinement pro-
cess is rarely required, the overhead is negligible in both cases.

We can verify that as the distributions of classes become close
to each other, e.g. Kullback-Leibler divergence [7] becomes close
to zero, the refinement ratios have a tendency to increase and may
fail to accelerate the process. Although our proposed method is not
universally efficient, it shows advantages of acceleration (or power
saving) when the distributions are far from each other.

5. CONCLUSIONS

In this work, we reduced the comparison of GMM to simple interval
calculations and proposed an efficient Bayesian decision scheme. In
order to verify the significance, some experimental results of the ap-
plication to skin-color extraction were shown. It was verified that
the classification was almost completed with the simple initial deci-
sion process, and that the refinement process was able to improve the
classification with low overhead in terms of the computational speed.
Since the proposed algorithm is hardware-friendly, the implementa-
tion on ASIC/FPGA is expected as well as on programmable DSPs.
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