
AUTOMATIC GENERATION OF MAPS OF MEMORY ACCESSES
FOR ENERGY-AWAREMEMORYMANAGEMENT

Florin Balasa∗ Ilie I. Luican† Hongwei Zhu‡ Doru V. Nasui§

∗ Dept. of Computer Science, Southern Utah University, Cedar City, UT
† Dept. of Computer Science, University of Illinois at Chicago, Chicago, IL

‡ ARM, Inc., Sunnyvale, CA
§ American Int. Radio, Inc., Rolling Meadows, IL

ABSTRACT

Many signal processing systems are synthesized to execute data-
dominated applications. Their behavior is described in a high-level
programming language, where the code is typically organized in
sequences of loop nests and the main data structures are multidi-
mensional arrays. Since data transfer and storage have a signif-
icant impact on both the system performance and the major cost
parameters – power consumption and chip area, the designer must
spend a significant effort during the system development process
on the exploration of the memory subsystem in order to achieve a
cost-optimized design. This paper focuses on the reduction of the
dynamic energy consumption in the hierarchical memory subsys-
tem of multidimensional signal processing systems, starting from
the high-level behavioral specification of the application. The pa-
per presents an algorithm which identifies those parts of arrays
from a high-level specification that are intensely accessed (for read
and/or write operations), whose storage on-chip yields the highest
benefit in terms of dynamic energy consumption. Tested on a two-
layer memory hierarchy (scratch-pad and off-chip memories), this
algorithm led to significant savings of energy in comparison to
previous computation models.

Index terms– Memory allocation, multi-layer memory subsystem,
dynamic energy consumption, signal assignment to memory layers

1. INTRODUCTION

Many multidimensional signal processing systems (particularly, in
the domains of multimedia and telecommunications), are synthe-
sized to execute data-intensive applications. Since data transfer
and storage have a significant impact on both the system perfor-
mance and the major cost parameters – power consumption and
chip area, the designer must spend a significant effort during the
system development process on the exploration of the memory
subsystem in order to achieve a cost-optimized design.

The memory subsystem is, typically, a major contributor to the
overall energy budget of the system [5]. Savings of dynamic en-
ergy (which expands only when memory accesses occur) at the
level of the whole memory subsystem can be potentially obtained

by accessing frequently used data from smaller on-chip memo-
ries rather than from large background (off-chip) memories, the
problem being how to optimally assign the data to the memory
layers.1 As on-chip storage, the scratch-pad memories (SPMs)
– software-controlled static or dynamic random-access memories,
more energy-efficient than caches – are widely used in embedded
systems, in which the flexibility of caches in terms of workload
adaptability is often unnecessary, whereas power consumption and
cost play a much more critical role. Different from caches, the
SPM occupies one distinct part of the virtual address space with
the rest of the address space occupied by the main memory. The
consequence is that there is no need to check for the availability of
the data in the SPM. Hence, the SPM does not possess a compara-
tor and the miss/hit acknowledging circuitry [3]. This contributes
to a significant energy (as well as area) reduction. Another con-
sequence is that in cache memory systems, the mapping of data
to the cache is done during the code execution, whereas in SPM-
based systems this can be done either manually by the designer, or
automatically – by a compiler, using a suitable algorithm.

The energy-efficient assignment of signals to the on- and off-
chip memories has been studied since the late nineties. These pre-
vious works focused on partitioning the data structures from the
application code into so-called copy candidates, and on the op-
timal selection and mapping of these into the memory hierarchy
[13]. Their general idea was to identify the most frequently ac-
cessed data in each loop nest. For instance, Kandemir and Choud-
hary analyze and exploit the temporal locality by inserting local
copies [10]. Their layer assignment builds a separate hierarchy per
loop nest and then combines them into a single hierarchy. How-
ever, the approach lacks a global view on the (part of) arrays life-
times in applications having imperfect nested loops. Brockmeyer
et al. use the steering heuristic of assigning the arrays having the
lowest access number over size ratio to the cheapest memory layer
first, followed by incremental reassignments [4]. Hu et al. can use
parts of arrays as copies, but they typically use cuts along the array
dimensions [9] (like rows and columns of matrices).

The energy-aware partitioning of an on-chip memory in mul-

1Note that this problem is basically different from caching for performance [8],
where the question is to find how to fill the cache such that the needed data have
been loaded in advance from the main memory.

629978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009

optDelta[0] = 0 ; // int A[81][81]: input;
for (i=16; i<=64; i++)
 for (j=16; j<=64; j++)
 { Delta[i][j][0] = 0 ;
 for (k=i-16; k<=i+16; k++)
 for (l=j-16; l<=j+16; l++)
 Delta[i][j][33*k-33*i+l-j+545] = A[i][j] - A[k][l]
 + Delta[i][j][33*k-33*i+l-j+544] ;
 optDelta[49*i+j-799] = Delta[i][j][1089] + optDelta[49*i+j-800];
 }
opt[0] = optDelta[2401];

Figure 1: Illustrative example whose structure is similar to a mo-
tion detection kernel (m = n = 16, M = N = 64) [6].

 0

 500

 1000

 1500

 2000

 2500

"exact_map_of_accesses_signal_A"

 0 10 20 30 40 50 60 70 80
 0

 10

 20

 30

 40

 50

 60

 70

 80

Figure 2: Exact map of memory read accesses (obtained by simu-
lation) for the 2D signal A from the illustrative code in Fig. 1.

tiple banks has been studied by several research groups, as well.
Techniques of an exploratory nature analyze possible partitions,
matching them against the access patterns of the application [7].
Other approaches exploit the properties of the dynamic energy cost
and the resulting structure of the partitioning space to come up
with algorithms able to derive the optimal partition for a given ac-
cess pattern [1].

Starting from the behavioral specification of a given applica-
tion, where the code is organized in sequences of loop nests and
the main data structures are multidimensional arrays, this pa-
per presents an algorithm which can automatically build maps of
memory accesses to the array space of signals and, consequently,
allows to identify with accuracy those parts of arrays that are more
intensely accessed for read or write operations. Storing on-chip
these parts of arrays yields the highest reduction of the dynamic
energy consumption in a hierarchical memory subsystem. The
proposed computation model was tested for the time being assum-
ing two memory layers – on-chip scratch-pad and off-chip memo-
ries – focusing on the reduction of the dynamic energy consump-
tion due to memory accesses. Extensions of the model to the ex-
ploitation of memory banking, as well as taking also into account
the leakage energy consumption, will be addressed in the future.

The rest of the paper is organized as follows. Section 2 presents
the algorithm used to detect the parts of the arrays intensely ac-
cessed by memory operations during the execution of a loop-
organized algorithmic specification. Section 3 discusses imple-
mentation aspects and presents experimental results. Finally, Sec-
tion 4 summarizes the main conclusions of this research.

2. MAPS OF MEMORY ACCESSES FOR
ENERGY-AWARE MEMORY MANAGEMENT

The algorithms describing the functionality of real-time multi-
media and telecom applications are typically specified in a high-
level programming language, where the code is organized in se-
quences of loop nests having as boundaries linear functions of the
outer loop iterators. Conditional instructions are very common
as well, and the multidimensional array references have (possibly
complex) linear indices (the variables being the loop iterators).

Figure 1 shows an illustrative example whose structure is simi-
lar to the kernel of a motion detection algorithm2 [6]. The problem
is to automatically identify those parts of arrays from the given ap-
plication code that are more intensely accessed, in order to steer
their assignment to the energy-efficient data storage layer (the on-
chip scratch-pad memory) such that the dynamic energy consump-
tion in the hierarchical memory subsystem be reduced.

The number of storage accesses for each array element can cer-
tainly be computed by the simulated execution of the code. The
result of such a simulation is displayed in Fig. 2, where the area
represents the so-called index space of the 2D signal A from the
illustrative code in Fig. 1. For each pair of possible indexes (be-
tween 0 and 80), the number of accesses was counted and the level
of grey depends on the intensity with which the array elements are
accessed (the darker the color, the higher the number of accesses).
The array elements near the center of the index space are accessed
with high intensity (for instance, A[40][40] is accessed 2178 times;
A[16][40] is accessed 1650 times), whereas the array elements at
the periphery are accessed with a significantly lower intensity (for
instance, A[0][40] is accessed 33 times and A[0][0] only once).

The drawbacks of such an approach are twofold. First, the simu-
lated execution may be computationally ineffective when the num-
ber of array elements is very significant, or when the application
code contains deep loop nests. Second, even if the simulated exe-
cution were feasible, such a scalar-oriented technique would not
be helpful since the addressing hardware of the data memories
would result very complex. In order to obtain a reasonable mem-
ory addressing logic, it would be desirable to model the parts of
the signals’ index space we are mapping into physical memories as
(images of) Z-polyhedra [14], rather than sets of array elements.

Our proposed computation methodology for building approxi-
mate maps of memory accesses is described below, after defining
a few basic concepts.

Each array referenceM [x1(i1, . . . , in)] · · · [xm(i1, . . . , in)] of
an m-dimensional signal M , in the scope of a nest of n loops
having the iterators i1, . . . , in , is characterized by an iterator
space and an index (or array) space. The iterator space signifies

2The actual code contains also a delay operator that is irrelevant in our context.

630

opt0
1

A0
2401

Delta0
2401

24011089 Delta1
2612288

26122881807936

A1
1296

219912

A2
1296

784

219128

A3
784

182920

A4
784

528

182392

optDelta0
1

1 optDelta1
2400

2400

2401

2609887

Delta2
2401

2401

1

1

2399

optDelta2
1

1

Figure 3: Graph showing the dependence relations between the
lattices derived from the illustrative code in Fig. 1.

the set of all iterator vectors i = (i1, . . . , in) ∈ Z
n in the scope

of the array reference, and it can be typically represented by a so-
called Z-polytope (a polyhedron bounded and closed, restricted to
the set Z

n): { i ∈ Z
n | A · i ≥ b }. E.g., for the array ref-

erence A[k][l] from the code in Fig. 1, the iterator vector is the
column vector i=[i j k l]T , the matrix A has 8 rows (and 4
columns) derived from the lower and upper boundaries of the 4
nested loops, and b is a column vector of 8 elements. The index
space is the set of all index vectors x = (x1, . . . , xm) ∈ Z

m of
the array reference. When the indices of an array reference are
linear mappings with integer coefficients of the loop iterators, the
index space consists of one or several linearly bounded lattices:
{ x = T · i + u ∈ Z

m | A · i ≥ b , i ∈ Z
n}. E.g., for the same

array reference A[k][l], T=
[

0 0 1 0
0 0 0 1

]
and u=

[
0
0

]
.

Step 1 Extract the array references from the given algorithmic
specification and decompose the array references for every in-
dexed signal into disjoint lattices.

The motivation of the decomposition of the array references re-
lies on the following intuitive idea: the disjoint lattices which be-
long to many array references are actually those parts of the arrays
more heavily accessed during the code execution. This decompo-
sition into disjoint lattices – used also in [2] – can be performed
analytically, by recursively intersecting the array references of ev-
ery multidimensional signal in the code.
Step 2 Build the polyhedral dependence graph of the algorithmic
specification.

"computed_map_of_accesses_signal_A_3D"

 0 10 20 30 40 50 60 70 80 0
 10

 20
 30

 40
 50

 60
 70

 80

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

Figure 4: Computed 3D map of memory read accesses for the
signal A from the illustrative code in Fig. 1.

Figure 3 shows the polyhedral dependence graph derived from
the illustrative code in Fig. 1. The nodes in this graph represent the
disjoint lattices determined at Step 1 and the arcs are dependence
relations between these lattices. The nodes are labeled with the
number of array elements covered by the lattices and the arcs are
labeled with the number of dependencies between the lattices.
Step 3 Compute the average number of memory accesses for each
disjoint lattice.

Notice that the total number of dependencies of a lattice (that
is, the sum of the labels of all the arcs starting from the node
representing the lattice in the polyhedral graph) yields, actually,
the number of read operations for the array elements covered
by the lattice. For instance, there are 4 arcs starting from the
node A0 (see Fig. 3) representing the lattice A0 covering the
central part of the index space of signal A. The total num-
ber of read accesses to this lattice is the sum of 4 arc labels:
1,089+2,401+1,807,936+2,612,288=4,423,714. Since the number
of A-elements covered by this lattice is 2,401 (see the label of node
A0), the average number of accesses for this lattice is 1,842.45 .
Step 4 Build the approximate map of memory accesses for the
index space of each signal.

The index space of each signal was partitioned into disjoint lat-
tices (Step 1), each lattice having its own average number of mem-
ory accesses (computed at Step 3). Figure 4 displays such a 3D
map for the signal A (see the code in Fig. 1), where A’s index
space is in the horizontal plane xOy and the average numbers of
memory accesses are on the vertical axis Oz.
Step 5 Select the lattices having the highest access numbers,
whose total size does not exceed the maximum SPM size (assumed
to be a design constraint), and map them into the SPM [14].

3. EXPERIMENTAL RESULTS

A hierarchical memory allocation tool has been implemented in
C++, incorporating the algorithm described in this paper. For the
time being, the tool supports only a two-level memory hierarchy,

631

Application #Array #Array #Memory Mem. Dyn. energy SPM Energy Energy Energy CPU
refs. elements accesses size 1-layer [μJ] size saved [4] saved [9] saved [sec]

Motion estim. 13 265,633 864,900 2,465 3,088 1,416 38.7% 40.7% 50.7% 23
Durbin alg. 21 252,499 1,004,993 1,249 3,588 764 55.2% 58.5% 73.2% 28
SVD updating 85 3,045,447 6,227,124 34,950 22,231 12,672 35.9% 38.4% 46.0% 37
Vocoder 236 33,619 200,000 11,890 714 3,879 30.8% 32.5% 39.5% 8
Dyn. prog. 3,992 21,082,751 83,834,000 124,751 299,287 27,316 43.3% 46.6% 56.1% 47

Table 1: Experimental results.

where an SPM is used between the main memory and the proces-
sor core. The dynamic energy is computed based on the number of
accesses to each memory layer. In computing the dynamic energy
consumptions for the SPM and the main (off-chip) memory, the
CACTI v4.2 power model [12] is used.

Table 1 summarizes the results of our experiments, carried out
on a PC with a 1.85 GHz Athlon XP processor and 512 MB mem-
ory. The benchmarks used are algebraic kernels (like Durbin’s
algorithm for solving Toeplitz systems) and algorithms used in
multimedia applications (like, for instance, an MPEG4 motion es-
timation algorithm). The table displays the numbers of array ref-
erences, total number of array elements, and memory accesses;
the data memory size (in storage locations/bytes) and the dynamic
energy consumption assuming only one (off-chip) memory layer;
the SPM size and the savings of dynamic energy applying, respec-
tively, a previous model steered by the total number of accesses
for whole arrays [4], another previous model steered by the most
accessed array rows/columns [9], and the current model, versus
the single-layer memory scenario; the CPU times. The energy
consumptions for the motion estimation benchmark were, respec-
tively, 1894, 1832, and 1522 μJ; the saved energies relative to the
energy in column 6 are displayed as percentages in columns 8-10.

Storing on-chip all the signals is, obviously, the most desirable
scenario in point of view of dynamic energy consumption. We
assumed that the SPM size is constrained to smaller values than
the overall storage requirement. In our tests, we computed the ra-
tio between the dynamic energy reduction and the SPM size; the
value of the SPM size maximizing these ratio was selected, the
idea being to obtain the maximum benefit for the smallest SPM
size. The sizes of the main memory and of the SPM were evalu-
ated after the mapping of the signals into the physical memories,
using a mapping algorithm based on the computation of maximal
bounding windows [14]. Our experiments show that the savings of
dynamic energy consumption are from 40% to over 70% relative
to the energy used in the case of a flat memory design. Although
the previous models produce important energy savings as well, our
model led to 20%-33% better savings than them.

4. CONCLUSIONS
This paper has presented a methodology for partitioning the index
space of the multidimensional signals from data-dominated appli-
cations such that those array parts heavily accessed are identified
and stored in scratch-pad memories in order to diminish the dy-
namic energy consumption due to memory accesses.

References
[1] F. Angiolini, L. Benini, and A. Caprara, “An efficient profile-based

algorithm for scratchpad memory partitioning,” IEEE Trans. CAD,
vol. 24, no. 11, pp. 1660-1676, Nov. 2005.

[2] F. Balasa, H. Zhu, and I.I. Luican, “Computation of storage require-
ments for multi-dimensional signal processing applications,” IEEE
Trans. VLSI Systems, vol. 15, no. 4, pp. 447-460, April 2007.

[3] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Mar-
wedel, “Scratchpad memory : A design alternative for cache on-
chip memory in embedded systems,” in Proc. 10th Int. Workshop
on Hardware/Software Codesign, Estes Park CO, May 2002.

[4] E. Brockmeyer, M. Miranda, H. Corporaal, and F. Catthoor, “Layer
assignment techniques for low energy in multi-layered memory or-
ganisations,” in Proc. ACM/IEEE Design Aut. & Test in Europe,
Munich, Germany, Mar. 2003, pp. 1070-1075.

[5] F. Catthoor, S. Wuytack, E. De Greef, F. Balasa, L. Nachtergaele,
and A. Vandecappelle, Custom Memory Management Methodol-
ogy: Exploration of Memory Organization for Embedded Multime-
dia System Design, Boston: Kluwer Academic Publishers, 1998.

[6] E. Chan and S. Panchanathan, “Motion estimation architecture for
video compression,” IEEE Trans. on Consumer Electronics, vol. 39,
pp. 292-297, Aug. 1993.

[7] S. Coumeri and D.E. Thomas, “Memory modeling for system syn-
thesis,” IEEE Trans. VLSI Syst., vol. 8, no. 3, pp. 327-334, 2000.

[8] J.Z. Fang and M. Lu, “An iteration partition approach for cache or
local memory thrashing on parallel processing,” IEEE Trans. Com-
puters, vol. 42, no. 5, pp. 529-546, 1993.

[9] Q. Hu, A. Vandecapelle, M. Palkovic, P.G. Kjeldsberg, E. Brock-
meyer, and F. Catthoor, “Hierarchical memory size estimation for
loop fusion and loop shifting in data-dominated applications,” in
Proc. Asia-S. Pacific Design Automation Conf., Yokohama, Japan,
2006, pp. 606-611.

[10] M. Kandemir and A. Choudhary, “Compiler-directed scratch-
pad memory hierarchy design and management,” in Proc. 39th
ACM/IEEE Design Automation Conf., Las Vegas NV, June 2002,
pp. 690-695.

[11] A. Schrijver, Theory of Linear and Integer Programming, New York:
John Wiley, 1986.

[12] S. Wilton and N. Jouppi, “CACTI: An enhanced access and cycle
time model,” IEEE J. Solid-State Circuits, May 1996.

[13] S. Wuytack, J.-P. Diguet, F. Catthoor, and H. De Man, “Formalized
methodology for data reuse exploration for low-power hierarchical
memory mappings,” IEEE Trans. VLSI Syst., vol. 6, no. 4, pp. 529-
537, Dec. 1998.

[14] H. Zhu, I.I. Luican, and F. Balasa, “Mapping multi-dimensional sig-
nals into hierarchical memory organizations,” Proc. ACM/IEEEDe-
sign Aut. & Test in Europe, Nice, France, April 2007, pp. 385-390.

632

