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ABSTRACT
In speech recognition systems, CHMM (Continuous Hidden

Markov Model) based speech recognition algorithms have the

best accuracy but with the most computational cost. Neither

General Purpose Processor (GPP) nor dedicated hardware im-

plementation is a good solution for the algorithm, due to high

power consumption for the former and lack of flexibility for

the later. To reduce power consumption and enhance flexi-

bility, this paper presents a speech recognition system com-

posed of a coprocessor and a MCU. The coprocessor is a

dedicated hardware design for Output Probability Calcula-

tion (OPC), which is the most computation-intensive part in

CHMM, and MCU is a 32bit RISC (ARM). Tested with a 358-

state 3-mixture 27-feature 800-word HMM, MCU operates at

40MHz and coprocessor operates at 10MHz to meet real-time

requirement. The power consumption of MCU is 10mW, and

coprocessor 1.8mW.

Index Terms— HMM, Speech recognition, FPGA, Co-

processors.

1. INTRODUCTION AND PREVIOUS WORK

CHMM based speech recognition algorithms have a high

recognition accuracy for word recognition tasks [1] [2]. It is

increasingly popular in mobile and other embedded applica-

tions. Most commercial products take GPP [1] [2] [3] as the

main implementation approach for CHMM based embedded

speech recognition systems. However, since the hardware

is not a dedicated design for the algorithm, it is not able

to efficiently process the vast amount of vector operations.

Therefore GPP always requires a very high operation fre-

quency to meet real-time requirement. As a result, the power

consumption and cost of these systems are usually very high.

Dedicated hardware implementation of CHMM based

speech recognition algorithms is an effective solution for

low-power embedded system compared to GPP based imple-

mentation. For example, a scalable architecture implement-

ing the whole speech recognition algorithm is reported in [4].

*This work is supported by Department of Electronic Engineering, Ts-

inghua University, Beijing, China (Contact person: Weiqian Liang, e-mail:

lwq@tsinghua.edu.cn).

Its processing time with 800-word vocabulary is rather small

(56.9μs/word). Its power consumption is 421.5mW. However,

this architecture is only suitable for HMM with single Gaus-

sian mixture distribution. For multiple Gaussian mixtures,

hardware architecture needs to be adjusted, which reduces

its flexibility. An HMM-based speech recognition Integrated

Circuit in [5] could operate at 20MHz to finish recognition

task. However, the word library has only 50 words, and it

handles only double Gaussian mixtures. Besides, the look-up

table based approach in [5] for OPC requires more memory

resources.
To gain advantages from both, some work combines GPP

and dedicated hardware implementation. In that case, ded-

icated hardware is designed for part of the speech recogni-

tion algorithm, leaving other operations to GPP [6] [7] [8].

In [6], FPGA implementation of Viterbi algorithm had been

proposed, leaving other operations to Motorola 56002. How-

ever, the number of states is limited to 6 to meet real-time

requirement. A coprocessor for Mahalanobis distance cal-

culation had been designed in [7], leaving other operations

to ARM7. Hardware implementation for OPC is proposed

in [8]. However, the sequential approach to calculate Ma-

halanobis distance and add-log in [8] lowers the processing

speed compared to the parallel approach.

In this paper, we propose a new speech recognition sys-

tem by combining MCU and coprocessor. The coprocessor is

a dedicated hardware design for OPC. MCU processes other

operations needed by the algorithm and system control tasks.

We target speech recognition systems with less demanding

requirements on response time, such as those in telephone,

language study machine and toy, where real time factor no

more than 1 is acceptable [3]. The proposed system has the

following characteristics. 1) The interface between copro-

cessor and MCU is standard SRAM interface, which makes

the coprocessor easily controlled by MCU. 2) The overall

system is easily reconfigurable through MCU when param-

eters of HMM change so that the system is very adaptable

to different recognition tasks. 3) The coprocessor can calcu-

late Mahalanobis distance and add-log in parallel. 4) Add-log

calculation is based on polynomial fitting method [9] which

is more area-saving compared to look-up table method. 5)
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Fig. 1. Computation flow for the CHMM based speech recog-

nition algorithm.

Single port SRAMs are adopted in the coprocessor to save

hardware resource significantly. We implemented the whole

speech recognition system by Samsung S3C44b0X [10] and

Xilinx FPGA Virtex II XCV2000 [11].

The rest of the paper is organized as follows. Section 2 de-

scribes OPC in CHMM based speech recognition algorithms.

Section 3 presents the implementation of the system. Sec-

tion 4 gives the experimental results. Finally, conclusions are

drawn in Section 5.

2. OUTPUT PROBABILITY CALCULATION

In CHMM based speech recognition algorithms, there are

mainly three steps, MFCC (Mel-Frequency Cepstral Coeffi-

cients) feature extraction, OPC and Viterbi decoding [3] [7]

[12]. The second step, OPC, is composed of two sub-steps,

Mahalanobis distance calculation and add-log calculation.

The computation flow of this algorithm is shown in Fig. 1.

In the following, let’s define F is the number of frames, J
the number of states, G the number of Gaussian mixtures, M
the number of features, and W the number of words. Then,

the processing time of MFCC feature extraction is TMFCC =
F × M × PMFCC / fc, Mahalanobis distance calculation is

TMDC = F × J × M × G × PMDC / fc, add-log calculation

is TALC = F × J × G × PALC / fc, and Viterbi decoding

is TV D = W × PV D / fc [3] [7], where fc is the operation

frequency, PMFCC , PMDC , PALC and PV D is the number

of clock periods for the corresponding computation respec-

tively. (The value of fc, PMFCC , PMDC , PALC and PV D is

different for different implementations.)

We have evaluated the computation load for each step of

this algorithm based on a 358-state 3-mixture 27-feature 800-

word HMM in different implementations, such as a general-

purpose 16bit fix-point DSP Uni-Lite [3] [13], a 32bit RISC

MCU S3C44b0X [10], and an AMD Sempron 2800+ PC. The

results in different implementations are shown in Table 1. It

can be seen that OPC is the most computation-intensive pro-

cessing step of the algorithm. However, OPC has the charac-

teristic of regular data flow which will be illustrated below.

The output probability density function b̃j(ot) in logarith-

mic domain (to avoid underflow) is shown in (1) [3] [7] [12].

where ot is the speech feature vector at frame t, cjg , μjg and

Table 1. Distribution of computation load for each step of

speech recognition algorithm in three implementations

Uni-Lite S3C44b0X PC

MFCC feature extraction 10.5% 8.7% 8.2%
Output probability calculation 70.9% 75.9% 81.2%

(Mahalanobis distance calculation) (55.7%) (61.2%) (64.7%)

(Add-log calculation) (15.2%) (14.7%) (16.5%)

Viterbi Decoding 18.6% 15.4% 10.6%

Σjg is the weight, the mean and the covariance matrix respec-

tively for state j and the gth Gaussian mixture distribution.

b̃j(ot) = log

G∑
g=1

cjgbj(ot) = log

G∑
g=1

{exp[−1
2
(ot − μjg)

′
Σ−1

jg (ot − μjg) + log
cjg√

(2π)M |Σjg|
]}
(1)

The first part in (1) is Mahalanobis distance calculation,

which is shown in (2). The second part in (1) is add-log cal-

culation, which is shown in (3).

−1
2
(ot − μjg)

′
Σ−1

jg (ot − μjg) = −1
2

M∑
i=1

[(oti − μjgi)δjgi]2

(2)

log{
G∑

g=1

exp[Qg]} (3)

where Qg = − 1
2

M∑
i=1

[(oti − μjgi)δjgi]2 + djg , djg =

log
cjg√

(2π)M |Σjg|
, and δjgi is the square root of the ith di-

agonal element in matrix Σ−1
jg [4] [7]. It can be seen that

Mahalanobis distance calculation in (2) could be converted to

a group of multiplication and addition operations.

For add-log calculation in (3), let’s define F(a, b) as fol-

lows:

F (a, b) = log[exp(a) + exp(b)]

max(a, b) + log[1 + exp(−|a − b|)] (4)

From (4), further define G(x) as follows [11]:

G(x = |a − b|) = log[1 + exp(−x)] =

A0 + xA1 + x2A2 + ... + xnAn =

A0 + x(A1 + x(A2 + ...(An−1 + xAn))) (5)

with (4) and (5), we rewrite the add-log calculation in (3) as

follows:

log{
G∑

g=1

exp[Qg]} = F (F (F (Q1, Q2), Q3), ..., QG) (6)

As a result, the add-log calculation in (3) could be con-

verted to a group of basic algebraic calculations [9], where

Ai is the coefficient of the polynomial (i=0,1,2,...,n, where n
is the maximum power of x in (5)).
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Fig. 2. Computation flow for OPC.

Fig. 3. Block diagram of the speech recognition system.

3. SYSTEM IMPLEMENTATION
3.1. Overall System Architecture

In Section 2, it can be seen that OPC is very suitable to ded-

icated hardware design. Moreover, add-log and Mahalanobis

distance can be calculated in parallel. The key point that jus-

tifies this parallel processing is that the current add-log cal-

culation is only related to the last Mahalanobis distance cal-

culation with the same Gaussian mixture, which is shown in

Fig. 2. Therefore we can compute Mahalanobis distance for

mixture g and the add-log for mixture g-1 at the same time.

We design a speech recognition system composed of a

MCU and a coprocessor to achieve the best tradeoff between

GPP and dedicated hardware design. The MCU will process

MFCC feature extraction, Viterbi decoding, and system con-

trol tasks, and the coprocessor takes care of OPC. We made

this decision because computation loads of MFCC feature ex-

traction and Viterbi Decoding is small and dedicated hard-

ware implementation for the entire speech recognition system

would lack flexibility.

Fig. 3 shows the block diagram of the entire system.

The interface between MCU and coprocessor is the standard

SRAM interface except a ”Halt” signal, which is used for

interrupt. This interface makes the coprocessor easily con-

trolled by various MCU, such as ARM [14] and MIPS [15].

3.2. Coprocessor Design
The architecture of the coprocessor is shown in Fig. 4. The

block diagrams of MDC (Mahalanobis Distance Calculation)
Unit and ALC (Add-Log Calculation) Unit are shown in Fig.

5. MDC Unit performs a four-stage pipeline operation for

Mahalanobis distance calculation in (2). The total processing

time is (M + 3) / fc. ALC Unit is used to calculate polyno-

mial addition in (5). The total processing time is (n + 1) / fc.

Usually, n is set to 6 to ensure high precision.

Fig. 6 shows the block diagram of Interface Unit. It is

used to perform max and sum functions in (4), and iterations

in (6). The processing time of OPC for one frame and one

Fig. 4. Block diagram of coprocessor.

Fig. 5. Block diagram of MDC and ALC Unit.

state is TOPC = (G × (M + 3) + (n + 1)) / fc, and the total

processing time of OPC for all frames and all states is F × J ×
TOPC , compared to the sum of TMDC and TALC in Section

2, the processing time of OPC is reduced significantly.

Fig. 7 shows the block diagram of SRAM Array. There

are two Address in ports for the four SRAM blocks, and two

Data in ports for SRAM4. Although dual-port SRAMs may

seem necessary, we can use single-port SRAMs with multi-

plexers controlled by both MCU and coprocessor since they

do not need to access these SRAMs at the same time. This

also helps reduce the hardware resources [7].

4. EXPERIMENT AND MEASUREMENT RESULTS

We used Xilinx Virtex II FPGA XCV2000 to implement the

coprocessor. The design summary of Xilinx ISE shows that

the total equivalent 2-NAND gate count for the design is 26K.

Samsung S3C44b0x (containing an ARM core) [10] is used as

MCU. Fig. 8 shows the complete speech recognition system.

Test for the system is based on the same HMM used in

Section 2. Result shows that total processing time (includ-

ing MFCC feature extraction, OPC and Viterbi decoding) of

the system for a 1.0s speech (79 frames) is 0.945s, which is

very comparable to 0.877s of the Uni-Lite based system for

the same speech. However, in the proposed system, MCU can
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Fig. 6. Block diagram of Interface Unit.

Fig. 7. Block diagram of SRAM Array.

work at 40MHz to fulfill MFCC feature extraction, Viterbi de-

coding and system control tasks and its power consumption is

10mW. The coprocessor only needs to work at 10MHz and its

power consumption is 1.8mW. Table 2 gives the performance

comparison between Uni-Lite and coprocessor for OPC only.

It can be seen that power consumption of Uni-Lite is 32.5

times that of the coprocessor.

The total dissipated energy of Uni-Lite based system is

0.887 × 58.5 = 51.89mW·s. For our system, considering

that OPC in coprocessor takes 358 × 79 × 9.7 × 10−6 =

0.274s, MFCC feature extraction in MCU takes 0.242s, and

Viterbi decoding in MCU 0.429s, the total dissipated energy

(not including data transfer time, which is less than 0.002s) is

7.2mW·s, which significantly reduces energy by 86.2% com-

pared to Uni-Lite based system.

For the dedicated hardware implementation of the entire

speech recognition system in [4], the processing time is very

small at the expense of 15 times of the hardware resources

of our system. Besides, if the number of Gaussian mixtures

(G) changes for a new HMM model or a different recognition

task, the hardware in [4] should be re-designed. In our sys-

tem, although the processing time is longer, the architecture

of the coprocessor needs no modification when G (or other pa-

rameters) changes. Therefore, our system is more flexible and

easily adaptable to different models or new recognition tasks.

Furthermore, it turns out that for the same HMM model and

the same recognition task, for instance the 32-state 1-mixture

38-feature 800-word HMM as used in [4], the proposed sys-

tem can save energy consumption by 58% compared to the

implementation in [4].

5. CONCLUSION

A speech recognition system composed of a MCU and a

coprocessor has been designed. The coprocessor is a dedi-

cated design for OPC in CHMM based speech recognition

Fig. 8. System implemented by ARM and coprocessor.

Table 2. Performance comparison for OPC for one frame and

one state (27-feature 3-mixture word HMM)
Uni-Lite Coprocessor

Clock frequency 104 MHz 10 MHz

Processing time 22.3 μs 9.7 μs
Voltage 1.8 V 1.8 V

Power Consumption 58.5 mW 1.8 mW

algorithms, while MCU performs the rest of the processing

steps. By combining them, a good tradeoff between power

consumption and flexibility is achieved compared to other

implementations with only GPP or dedicated hardware.
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