
Challenges and Opportunities of Obtaining Performance
from Multi-Core CPUs and Many-Core GPUs

Trista P. Chen* and Yen-Kuang Chen+

FX Palo Alto Laboratory* and Intel Corporation+

ABSTRACT

Multi-core processors represent a major development in
computing technology. For example, Intel® Core™ 2 Quad
processors, IBM Cell processors, and Nvidia GeForce 9800
GX2, are widely used. However, most applications struggle
to make the best use of the power provided by many-core
processors. Easy-to-use software tools are hard to find.
Furthermore, it’s not clear what changes need to be made to
algorithms to fully utilize many-core CPUs or GPUs. In this
paper, we try to offer a bird’s eye view of the opportunities
lying ahead in two folds: (1) software tools and (2)
workload analysis. With good software tools and insightful
workload analysis, software and algorithm developers can
not only harness the power of many computing cores, but
also innovate new algorithms that best utilize the many
computing cores. New algorithms and applications are thus
made possible with the computing power not available
before.

Index Terms— GPU, CPU, many-core, multi-core

1. INTRODUCTION

The emerging multimedia applications demand more
powerful computation than before. To name a few,
multimedia data mining, 3D high-fidelity visualization, and
image/video understanding, are among the most demanding
workloads. It is shown that many emerging applications,
e.g., recognition, mining, and synthesis, have found a
variety of usage scenarios that require tera-floating-point-
operations-per-second (tera-FLOPS) [1].

A single CPU core today can only provide giga-FLOPS
of computation. Orders of magnitude of acceleration in
computing power are needed. The introduction of multi-
core CPUs and the promise of many-core GPUs [2] provide
some light to such a need. As Moore’s Law continues, we
can expect more processing units to be available to us.

However, software programmers have discovered that it
is easier to place many processing cores on a chip than to
write efficient parallel codes for that many processing cores.
Such trend was observed even in daily newspaper. The New

York Times [3] noted that, during the 80s, National Science
Foundation tried to persuade the computer industry, but
found little interest; and now the [multi-core] machines are
here … to get around power wall; however, “newer chips
with multiple processors require dauntingly complex
software.”

Additionally, existing serial codes need to be re-written
to take advantage of the many-core computing power. The
algorithms often need to be modified. This is because the
best sequential algorithm is not necessarily the best parallel
algorithm. As shown in Figure 1, one algorithm is faster
than the other on a single-core processor. But it is on the
other hand slower than the other on a 32-core processor.

This paper surveys opportunities for multimedia
software and algorithm developers. The paper is organized
as follows: Section 2 will describe why CPUs are going the
direction of many-core, and how naturally parallel GPUs are
evolving to general purpose computing. Section 3 will
provide an overview of software tools for parallel
computing on a variety of platforms (e.g., CPUs, GPUs, and
Cell). Section 4 will briefly describe how workload analysis
can help us obtain critical information for algorithm
changes. Finally, we conclude the paper.

2. MULTI-CORE CPU AND MANY-CORE GPU

As more transistors are integrated into a single chip, the
chip consumes more power. For example, from the mid-80s
to the late 90s, the power consumption of Intel’s

0

1

2

3

4

5

0 8 16 24 32
Number of processors

R
el

at
iv

e
pe

rf
or

m
an

ce

Graph mining algorithm 1 Graph mining algorithm 2

Figure 1: The best sequential algorithm is not the best
parallel algorithm [4].

613978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009

microprocessors follows the Moore’s Law, doubling every
two or three years [5], and reaching 20 watts/cm2 from 1
watt/cm2. Nonetheless, as power consumption approached
the limit of sustainability, architects were forced to take a
different direction [6].

To further increase performance without substantially
increasing power consumption, parallel processing provides
an alternative. For example, Intel® Core™ 2 Duo
processors have lower thermal power consumption than
Intel® Pentium® 4 processors. Multi-core processors
represent a major development in computing technology.
Nowadays, Intel® Core™ 2 Quad processors, IBM Cell
processors, and Sun UltraSparc T1 processors, are widely
used.

GPU was originally driven by game and graphics
applications and is parallel in nature. Vertex and pixel
processors work on massive amount of geometry and pixel
data in parallel. Recent trend of GPU design has been on a
unified architecture that allows for a single type of
processing core. For example, Nvidia GeForce 9800 GX2
has 256 stream processors and is one order of magnitude
from tera-FLOPS. Such design eliminates the need to
estimate the distribution of workload characteristics and
reduces its inefficiency when such an estimate is not
accurate. In addition, more general computing, esp. signal
processing, has been performed on GPUs [7][8][9] utilizing
its near tera-FLOPS power, with its increasing
programmability. More considerations of parallel computing
can also be found at [10].

3. SOFTWARE TOOLS

Multi-core CPUs are currently in the market. Effectively
using its multiple cores remains a challenge. Programmers
have been struggled to obtain linear speed-ups with the
number of cores. In addition, it is well known that the
programmability of general-purpose computation on GPU
(GPGPU) with hundreds of cores is not easy. This section
provides an overview of the software tools that help the
programmers to harness the many-core processing power.

3.1. Software Tools on CPU

In order to provide a portable and scalable model for
developers of shared-memory parallel applications, a group
of major computer hardware and software vendors got
together in 90s to define a standardized Application
Program Interface (API), called OpenMP [11]. Figure 2
shows an example of OpenMP codes in C/C++. It almost
looks like a standard C code except for OMP constructs.
The programmers do not need to explicitly manage the
threads among cores. It uses a fork-join model to exploit
thread-level parallelism for shared-memory systems. The
programs begin as a single process: the master thread. The
master thread executes sequentially until the first parallel

region construct is encountered. The master thread then
forks a team of parallel threads. The statements in the
program that are enclosed by the parallel region construct
are then executed in parallel among the various team
threads. When the team threads complete the statements in
the parallel region, they synchronize and terminate, leaving
only the master thread at the join point.

Through effective compiler and runtime library support,
OpenMP can tackle the performance challenge. In [12],
performance results of two multimedia applications using
OpenMP demonstrate that we can effectively achieve good
parallel performance by exploiting nested parallelism
through the Intel compiler and runtime system support for
OpenMP.

3.2. Software Tools on GPU

Fueled by the high volume gaming market, GPU
computation capability has been growing tremendously over
the past decade. However, most programs run on GPU are
still highly specialized, geared towards graphics/gaming
applications.

Brook for GPU [13] is one of the earlier attempts to
make programming on GPU similar to C programming, and
to harness GPU’s parallel computation power. A Brook
program consists of legal C code and extension to declare
streams and denote given functions as kernels. It hides
texture/pbuffer data management, graphics based constructs
in CG/HLSK, and rendering passes. An example Brook
program is shown in Figure 3.

Nvidia’s Compute Unified Device Architecture
(CUDA) [14][15] is a completely new architecture and
programming model for general purpose computation on
GPU. CUDA uses an extended C programming model.

void main()
{
 int blockSize = ...;
 for (int k=0; k<NUM_SAMS; k+=blockSize) {
 for (int i=0; i<NUM_SUPP_VEC; i++) {
 int lEnd_j = MIN(NUM_SAMS, k+blockSize);

#pragma omp parallel for default(shared)
 for (int j=k ; j<lEnd_j ; j++) {
 result[j] += linear_kernel(&samples[j],
 NUM_VDIM, i);
 }
 }
 }
}

Figure 2. OpenMP parallel region example in C/C++

kernel void updatepos (float2 pos<>,
 float2 vel[100][100],
 float timestep,
 out float2 newpos<>) {
 newpos = pos + vel[pos]*timestep;
}

updatepos (positions, velfield, 10f, positions);

Figure 3. A Brook program example [13]

614

CUDA programmers let hardware thread manager handles
threading automatically instead of programmers themselves.
Such model makes deadlocks among threads impossible.
Programmers need to focus only on data decomposition
among thread processors. An example CUDA program is
shown in Figure 4, where multiple levels of parallelism are
utilized: thread (identified by threadIdx), thread block
(identified by blockIdx), and grid of thread blocks.

3.3. Software Tools: across multiple platforms

While OpenMP is suitable for CPU platforms, Brook and
CUDA are suitable for GPU platforms, PeakStream
(acquired by Google in June 2007) [16] and RapidMind
[17] are tools for across different platforms.

PeakStream is a data-parallel stream programming
model for many-core processors. It is portable, aiming to
run across vendors and processor generations. It also means
to be interoperable to leverage existing libraries and tools as
MPI and gcc compiler. PeakStream programming model
uses API instead of introducing a new language for API’s
relatively easier adoption. Data are expressed as arrays of
32 or 64 bit floating point numbers. Operator overloading
coverts operators into data parallel operators. The API looks
like Intel MKL, Fortran, and Matlab functions. Functions
“make” and “write” move data onto the cores for
processing. Stream arrays are opaque. Data is copied back
to the system memory with “read” calls. PeakStream
Platform includes a virtual machine and its just-in-time
(JIT) compiler. At run time, PeakStream’s virtual machine
intercepts the special function calls embedded in the x86
binary. Such dynamic compilation facilitates binary
portability.

Similar to PeakStream, RapidMind uses hardware
abstraction layer and JIT compilation to optimize parallel
codes. Unlike PeakSteam, programmers of RapidMind can
define their own functions in addition to the provided API.
RapidMind’s abstraction layer automatically distributes

tasks among cores, either homogeneous cores or
heterogeneous cores. Hence, deadlock threads and thread-
synchronization problems are eliminated like Nvidia
CUDA. The JIT compilation avoids code re-writing hassle
when the same code is to run on a different hardware
architecture, for example, from 2 to 4 cores. In addition,
dynamic compilation allows run-time optimization based on
system feedbacks. Some workload, e.g., Black-Scholes
model, can even perform better than linear speed-ups when
the number of cores increases [17].

Ambric [18] takes a different approach than all the
software tools mentioned above. They started by
considering the programming tool, then developed hardware
architecture that met the software model. It is however for
embedded solutions rather than general purpose computing.
Such methodology for parallel computing might be a
solution on the general purpose computing platform.

4. WORKLOAD ANALYSIS

With the software tool, application developers can still feel
daunted with the possibility of great amount of re-writing
for the existing codes. Furthermore, application developers
may face challenges in finding the right algorithms for
many-core CPUs or GPUs. The return of developing a
brand new algorithm for many-core processors is unclear
even if the application developers decide to do so.
Workload analysis provides the key to these problems.

First, we must examine the inherent coarse-grained and
fine-grained, data-domain and functional-domain
parallelisms in the workload. For example, computer vision
algorithms can be categorized as low-level image
processing and high-level statistical analysis. Data-domain
parallelization partitions the data into independent pieces,
e.g., blocks of pixels. Functional-domain parallelization
decomposes the computation into stages, e.g., gradient
computation, hysterisis testing, and so on.

CPU C program CUDA C program
void add_matrix_cpu
 (float *a, float *b, float *c, int N)
{
 int i, j, index;
 for (i=0; i<N; i++) {
 for (j=0; j<N; j++) {
 index = i+j*N;
 c[index]=a[index]+b[index];
 }
 }
}

void main()
{
 ...
 add_matrix_cpu(a,b,c,N);
}

__global__ void add_matrix_gpu
 (float *a, float *b, float *c, int N)
{
 int i=blockidx.x*blodkDim.x+threadidx.x;
 int j=blockidx.y*blodkDim.y+threadidx.y;
 index = i+j*N;
 if (i<N && j<N)
 c[index]=a[index]+b[index];
}

void main()
{
 ...
 dim3 dimBlock (blocksize,blocksize);
 dim3 imGrid (N/dimBlock.x,N/dimBlock.y);
 add_matrix_gpu<<<dimGrid,dimBlock>>>(a,b,c,N);
}

Figure 4. Comparison of CPU C and CUDA C

615

Second, we evaluate the parallel performance on the
current hardware and projected future hardware. We should
characterize the performance bottlenecks (including
memory behavior) in detail. For example, in [19], we show
that the original implementation of the serial operation in
Canny Edge detection [20] prevents the algorithm from
scaling well in a multi-core system. By parallelizing the
hysteresis-testing portion of the algorithm, we can have a 5x
performance gain on a 32-core processor.

Such methodology is applicable to various computing
platforms, such as GPUs and the Cell. For example,

In [21], Lloyd et al. show a comprehensive work from
workload analysis to algorithm changes on many-core
GPUs. After surveying in-place and out-of-place
algorithms, the authors decided to choose an out-of-
place algorithm based on two good reasons: (1)
Stockham FFT has better memory access pattern, and
(2) texture cannot be read and written at the same time.
In [22], Wu et al. describe the steps to improve the
performance of their BSB implementation on Cell
processors, e.g., matrix shuffle, loop unrolling, double
buffering, etc. The result is very impressive. Their
implementation can achieve 70% of the peak
performance. When they can utilize 6 SPEs
simultaneously, the performance won’t be easily
matched by a workstation.

5. CONCLUSION

Processors with multiple cores are going main stream [23].
This not only applies to general-purpose CPUs, but also to
GPUs and even System-on-a-chip (SoC). This implies that
we can enable many emerging multimedia applications that
were not possible when the computing power was
unavailable. However, how to get the best performance out
of many-core CPUs and GPUs is a challenge, in particular,
how to develop software and algorithms for emerging
multimedia applications.

The opportunity lies in two folds: (1) software tools and
(2) workload analysis. With better software tools, software
developers can easily make the best use of the power of the
many computing cores. Additionally, analyzing the
workloads and considering architectural style can help us
adapt, choose, and develop algorithms.

6. REFERENCES

[1] Y.-K. Chen, J. Chhugani, P. Dubey, C. J. Hughes, D. Kim, S.
Kumar, V. W. Lee, A. D. Nguyen, and M. Smelyanskiy.
“Convergence of Recognition, Mining, and Synthesis
Workloads and its Implications”, Proceedings of IEEE, vol.
96, no. 5, pp. 790 – 807, May 2008.

[2] High Performance and Supercomputing with NVIDIA Tesla:
http://www.nvidia.com/object/tesla_computing_solutions.htm
l.

[3] J. Markoff, "Faster Chips are Leaving Programmers in Their
Dust," The New York Times, Dec. 2007.

[4] G. Buehrer, S. Parthasarathy, and Y.-K. Chen, "Adaptive
Parallel Graph Mining for CMP Architectures," IEEE
International Conference on Data Mining, pp. 97-106, Dec.
2006.

[5] F. Pollack, “New Microarchitecture Challenges in the Coming
Generations of CMOS Process Technologies,” IEEE/ACM
Int’l Symp. on Microarchitecture, 2001.

[6] R. M. Ramanathan, M. Agan, A. Daniel, and P. A. Correia,
“Intel Energy-Efficient Performance---Performance Made
Energy Efficient Through New Technological Leaps,” Intel
whitepaper, available from
http://download.intel.com/technology/eep/overview-
paper.pdf.

[7] GPGPU: http://www.gpgpu.org/.
[8] M. D. McCool, “Signal Processing and General-Purpose

Computing on GPUs”, IEEE Signal Processing Magazine,
May 2007, pp. 109-114.

[9] J. Fung and S. Mann, “Using Graphics Devices in Reverse
with OpenVidia: GPU-based Image Processing and Computer
Vision”, ICME 2008, Hanover, Germany, June 2008.

[10] K. Asanovic, R. Bodik, B. Catanzaro, J. Gebis, P. Husbands,
K. Keutzer, D. Patterson, W. Plishker, J. Shalf, S. Williams,
and K. Yelik, “The Landscape of Parallel Computing
Research: A View from Berkeley", Technical report, EECS
Department, University of California at Berkeley,
UCB/EECS-2006-183, December, 2006.

[11] OpenMP: http://www.openmp.org/
[12] X. Tian, J. Hoeflinger, G. Haab, Y.-K. Chen, M. Girkar, S.

Shah, "A Compiler for Exploiting Nested-Parallelism in
OpenMP Programs," Parallel Computing Journal, vol. 31, no.
10-12, pp. 960-983, Oct. 2005.

[13] Brook for GPU:
http://graphics.stanford.edu/projects/brookgpu/.

[14] Nvidia CUDA Homepage:
http://developer.nvidia.com/object/cuda.html.

[15] T. R. Halfhill, “Parallel Processing with CUDA”,
Microprocessor Report, January 28, 2008.

[16] Tom R. Halfhill, “Number Crunching with GPUs”,
Microprocessor Report, October 2, 2006.

[17] T. R. Halfhill, “Parallel Processing for the x86”,
Microprocessor Report, November 26, 2007.

[18] Tom R. Halfhill, “Ambric’s New Parallel Processor”,
Microprocessor Report, October 10, 2006.

[19] T. Chen, D. Budnikov, C. Hughes, and Y.-K. Chen,
"Computer Vision on Multi-Core Processors: Articulated
Body Tracking," ICME 2007, Beijing, China, July 2007.

[20] J. Canny, “A Computational Approach to Edge Detection”,
IEEE Trans. on Pattern Analysis and Machine Intelligence,
Vol 8, No. 6, Nov 1986.

[21] D.B. Lloyd, C. Boyd, and N. Govindaraju, “Fast Computation
of General Fourier Transforms on GPUs”, ICME 2008,
Hanover, Germany, June 2008.

[22] Q. Wu, P. Mukre, R. Linderman, T. Renz, D. Burns, M.
Moore, and Q. Qiu, “Performance Optimization for Pattern
Recognition using Associative Neutral Memory”, ICME
2008, Hanover, Germany, June 2008.

[23] W. Gibbs, “A Split at the Core,” Scientific American, Nov
2004.

616

