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ABSTRACT

Multi-core processors represent a major development in 
computing technology. For example, Intel® Core™ 2 Quad 
processors, IBM Cell processors, and Nvidia GeForce 9800 
GX2, are widely used. However, most applications struggle 
to make the best use of the power provided by many-core 
processors. Easy-to-use software tools are hard to find. 
Furthermore, it’s not clear what changes need to be made to 
algorithms to fully utilize many-core CPUs or GPUs. In this 
paper, we try to offer a bird’s eye view of the opportunities 
lying ahead in two folds: (1) software tools and (2) 
workload analysis. With good software tools and insightful 
workload analysis, software and algorithm developers can 
not only harness the power of many computing cores, but 
also innovate new algorithms that best utilize the many 
computing cores. New algorithms and applications are thus 
made possible with the computing power not available 
before.

Index Terms— GPU, CPU, many-core, multi-core 

1. INTRODUCTION 

The emerging multimedia applications demand more 
powerful computation than before. To name a few, 
multimedia data mining, 3D high-fidelity visualization, and 
image/video understanding, are among the most demanding 
workloads. It is shown that many emerging applications, 
e.g., recognition, mining, and synthesis, have found a 
variety of usage scenarios that require tera-floating-point-
operations-per-second (tera-FLOPS) [1].  

A single CPU core today can only provide giga-FLOPS 
of computation. Orders of magnitude of acceleration in 
computing power are needed. The introduction of multi-
core CPUs and the promise of many-core GPUs [2] provide 
some light to such a need. As Moore’s Law continues, we 
can expect more processing units to be available to us. 

However, software programmers have discovered that it 
is easier to place many processing cores on a chip than to 
write efficient parallel codes for that many processing cores. 
Such trend was observed even in daily newspaper. The New 

York Times [3] noted that, during the 80s, National Science 
Foundation tried to persuade the computer industry, but 
found little interest; and now the [multi-core] machines are 
here … to get around power wall; however, “newer chips 
with multiple processors require dauntingly complex 
software.”

Additionally, existing serial codes need to be re-written 
to take advantage of the many-core computing power. The 
algorithms often need to be modified. This is because the 
best sequential algorithm is not necessarily the best parallel 
algorithm. As shown in Figure 1, one algorithm is faster 
than the other on a single-core processor. But it is on the 
other hand slower than the other on a 32-core processor.   

This paper surveys opportunities for multimedia 
software and algorithm developers. The paper is organized 
as follows: Section 2 will describe why CPUs are going the 
direction of many-core, and how naturally parallel GPUs are 
evolving to general purpose computing. Section 3 will 
provide an overview of software tools for parallel 
computing on a variety of platforms (e.g., CPUs, GPUs, and 
Cell). Section 4 will briefly describe how workload analysis 
can help us obtain critical information for algorithm 
changes. Finally, we conclude the paper. 

2. MULTI-CORE CPU AND MANY-CORE GPU 

As more transistors are integrated into a single chip, the 
chip consumes more power. For example, from the mid-80s 
to the late 90s, the power consumption of Intel’s 
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Figure 1: The best sequential algorithm is not the best 
parallel algorithm [4]. 
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microprocessors follows the Moore’s Law, doubling every 
two or three years [5], and reaching 20 watts/cm2 from 1 
watt/cm2. Nonetheless, as power consumption approached 
the limit of sustainability, architects were forced to take a 
different direction [6]. 

To further increase performance without substantially 
increasing power consumption, parallel processing provides 
an alternative. For example, Intel® Core™ 2 Duo 
processors have lower thermal power consumption than 
Intel® Pentium® 4 processors. Multi-core processors 
represent a major development in computing technology. 
Nowadays, Intel® Core™ 2 Quad processors, IBM Cell 
processors, and Sun UltraSparc T1 processors, are widely 
used.

GPU was originally driven by game and graphics 
applications and is parallel in nature. Vertex and pixel 
processors work on massive amount of geometry and pixel 
data in parallel. Recent trend of GPU design has been on a 
unified architecture that allows for a single type of 
processing core. For example, Nvidia GeForce 9800 GX2 
has 256 stream processors and is one order of magnitude 
from tera-FLOPS. Such design eliminates the need to 
estimate the distribution of workload characteristics and 
reduces its inefficiency when such an estimate is not 
accurate. In addition, more general computing, esp. signal 
processing, has been performed on GPUs [7][8][9] utilizing 
its near tera-FLOPS power, with its increasing 
programmability. More considerations of parallel computing 
can also be found at [10]. 

3. SOFTWARE TOOLS 

Multi-core CPUs are currently in the market. Effectively 
using its multiple cores remains a challenge. Programmers 
have been struggled to obtain linear speed-ups with the 
number of cores. In addition, it is well known that the 
programmability of general-purpose computation on GPU 
(GPGPU) with hundreds of cores is not easy. This section 
provides an overview of the software tools that help the 
programmers to harness the many-core processing power. 

3.1. Software Tools on CPU 

In order to provide a portable and scalable model for 
developers of shared-memory parallel applications, a group 
of major computer hardware and software vendors got 
together in 90s to define a standardized Application 
Program Interface (API), called OpenMP [11]. Figure 2 
shows an example of OpenMP codes in C/C++. It almost 
looks like a standard C code except for OMP constructs. 
The programmers do not need to explicitly manage the 
threads among cores. It uses a fork-join model to exploit 
thread-level parallelism for shared-memory systems. The 
programs begin as a single process: the master thread. The 
master thread executes sequentially until the first parallel 

region construct is encountered. The master thread then 
forks a team of parallel threads. The statements in the 
program that are enclosed by the parallel region construct 
are then executed in parallel among the various team 
threads. When the team threads complete the statements in 
the parallel region, they synchronize and terminate, leaving 
only the master thread at the join point.  

Through effective compiler and runtime library support, 
OpenMP can tackle the performance challenge. In [12], 
performance results of two multimedia applications using 
OpenMP demonstrate that we can effectively achieve good 
parallel performance by exploiting nested parallelism 
through the Intel compiler and runtime system support for 
OpenMP.  

3.2. Software Tools on GPU 

Fueled by the high volume gaming market, GPU 
computation capability has been growing tremendously over 
the past decade. However, most programs run on GPU are 
still highly specialized, geared towards graphics/gaming 
applications.  

Brook for GPU [13] is one of the earlier attempts to 
make programming on GPU similar to C programming, and 
to harness GPU’s parallel computation power. A Brook 
program consists of legal C code and extension to declare 
streams and denote given functions as kernels. It hides 
texture/pbuffer data management, graphics based constructs 
in CG/HLSK, and rendering passes. An example Brook 
program is shown in Figure 3. 

Nvidia’s Compute Unified Device Architecture 
(CUDA) [14][15] is a completely new architecture and 
programming model for general purpose computation on 
GPU. CUDA uses an extended C programming model. 

void main() 
{
  int blockSize = ...; 
  for (int k=0; k<NUM_SAMS; k+=blockSize) { 
   for (int i=0; i<NUM_SUPP_VEC; i++) { 
    int lEnd_j = MIN(NUM_SAMS, k+blockSize); 

#pragma omp parallel for default(shared) 
    for (int j=k ; j<lEnd_j ; j++) { 
      result[j] += linear_kernel(&samples[j],
                                 NUM_VDIM, i); 
      } 
    } 
  } 
}

Figure 2. OpenMP parallel region example in C/C++ 

kernel void updatepos (float2 pos<>,
                       float2 vel[100][100], 
                       float timestep, 
                       out float2 newpos<>) { 
  newpos = pos + vel[pos]*timestep; 
}

updatepos (positions, velfield, 10f, positions); 

Figure 3. A Brook program example [13] 
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CUDA programmers let hardware thread manager handles 
threading automatically instead of programmers themselves. 
Such model makes deadlocks among threads impossible. 
Programmers need to focus only on data decomposition 
among thread processors. An example CUDA program is 
shown in Figure 4, where multiple levels of parallelism are 
utilized: thread (identified by threadIdx), thread block 
(identified by blockIdx), and grid of thread blocks. 

3.3. Software Tools: across multiple platforms 

While OpenMP is suitable for CPU platforms, Brook and 
CUDA are suitable for GPU platforms, PeakStream 
(acquired by Google in June 2007) [16]  and RapidMind 
[17] are tools for across different platforms. 

PeakStream is a data-parallel stream programming 
model for many-core processors. It is portable, aiming to 
run across vendors and processor generations. It also means 
to be interoperable to leverage existing libraries and tools as 
MPI and gcc compiler. PeakStream programming model 
uses API instead of introducing a new language for API’s 
relatively easier adoption. Data are expressed as arrays of 
32 or 64 bit floating point numbers. Operator overloading 
coverts operators into data parallel operators. The API looks 
like Intel MKL, Fortran, and Matlab functions. Functions 
“make” and “write” move data onto the cores for 
processing. Stream arrays are opaque. Data is copied back 
to the system memory with “read” calls. PeakStream 
Platform includes a virtual machine and its just-in-time 
(JIT) compiler. At run time, PeakStream’s virtual machine 
intercepts the special function calls embedded in the x86 
binary. Such dynamic compilation facilitates binary 
portability. 

Similar to PeakStream, RapidMind uses hardware 
abstraction layer and JIT compilation to optimize parallel 
codes. Unlike PeakSteam, programmers of RapidMind can 
define their own functions in addition to the provided API. 
RapidMind’s abstraction layer automatically distributes 

tasks among cores, either homogeneous cores or 
heterogeneous cores. Hence, deadlock threads and thread-
synchronization problems are eliminated like Nvidia 
CUDA. The JIT compilation avoids code re-writing hassle 
when the same code is to run on a different hardware 
architecture, for example, from 2 to 4 cores. In addition, 
dynamic compilation allows run-time optimization based on 
system feedbacks. Some workload, e.g., Black-Scholes 
model, can even perform better than linear speed-ups when 
the number of cores increases [17].  

Ambric [18] takes a different approach than all the 
software tools mentioned above. They started by 
considering the programming tool, then developed hardware 
architecture that met the software model. It is however for 
embedded solutions rather than general purpose computing. 
Such methodology for parallel computing might be a 
solution on the general purpose computing platform.  

4. WORKLOAD ANALYSIS 

With the software tool, application developers can still feel 
daunted with the possibility of great amount of re-writing 
for the existing codes. Furthermore, application developers 
may face challenges in finding the right algorithms for 
many-core CPUs or GPUs. The return of developing a 
brand new algorithm for many-core processors is unclear 
even if the application developers decide to do so. 
Workload analysis provides the key to these problems. 

First, we must examine the inherent coarse-grained and 
fine-grained, data-domain and functional-domain 
parallelisms in the workload. For example, computer vision 
algorithms can be categorized as low-level image 
processing and high-level statistical analysis. Data-domain 
parallelization partitions the data into independent pieces, 
e.g., blocks of pixels.  Functional-domain parallelization 
decomposes the computation into stages, e.g., gradient 
computation, hysterisis testing, and so on. 

CPU C program CUDA C program 
void add_matrix_cpu
     (float *a, float *b, float *c, int N) 
{
    int i, j, index; 
    for (i=0; i<N; i++) { 
        for (j=0; j<N; j++) { 
            index = i+j*N; 
            c[index]=a[index]+b[index]; 
        } 
    } 
}

void main() 
{
    ... 
    add_matrix_cpu(a,b,c,N); 
}

__global__ void add_matrix_gpu
     (float *a, float *b, float *c, int N) 
{
    int i=blockidx.x*blodkDim.x+threadidx.x; 
    int j=blockidx.y*blodkDim.y+threadidx.y; 
    index = i+j*N; 
    if (i<N && j<N) 
        c[index]=a[index]+b[index]; 
}

void main() 
{
    ... 
    dim3 dimBlock (blocksize,blocksize); 
    dim3 imGrid (N/dimBlock.x,N/dimBlock.y); 
    add_matrix_gpu<<<dimGrid,dimBlock>>>(a,b,c,N);
}

Figure 4. Comparison of CPU C and CUDA C  
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Second, we evaluate the parallel performance on the 
current hardware and projected future hardware. We should 
characterize the performance bottlenecks (including 
memory behavior) in detail. For example, in [19], we show 
that the original implementation of the serial operation in 
Canny Edge detection [20] prevents the algorithm from 
scaling well in a multi-core system. By parallelizing the 
hysteresis-testing portion of the algorithm, we can have a 5x 
performance gain on a 32-core processor.  

Such methodology is applicable to various computing 
platforms, such as GPUs and the Cell. For example,  

In [21], Lloyd et al. show a comprehensive work from 
workload analysis to algorithm changes on many-core 
GPUs. After surveying in-place and out-of-place 
algorithms, the authors decided to choose an out-of-
place algorithm based on two good reasons: (1) 
Stockham FFT has better memory access pattern, and 
(2) texture cannot be read and written at the same time.  
In [22], Wu et al. describe the steps to improve the 
performance of their BSB implementation on Cell 
processors, e.g., matrix shuffle, loop unrolling, double 
buffering, etc. The result is very impressive. Their 
implementation can achieve 70% of the peak 
performance. When they can utilize 6 SPEs 
simultaneously, the performance won’t be easily 
matched by a workstation. 

5. CONCLUSION 

Processors with multiple cores are going main stream [23]. 
This not only applies to general-purpose CPUs, but also to 
GPUs and even System-on-a-chip (SoC). This implies that 
we can enable many emerging multimedia applications that 
were not possible when the computing power was 
unavailable. However, how to get the best performance out 
of many-core CPUs and GPUs is a challenge, in particular, 
how to develop software and algorithms for emerging 
multimedia applications.  

The opportunity lies in two folds: (1) software tools and 
(2) workload analysis. With better software tools, software 
developers can easily make the best use of the power of the 
many computing cores. Additionally, analyzing the 
workloads and considering architectural style can help us 
adapt, choose, and develop algorithms.  
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