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ABSTRACT 

 

In this paper we investigate the use of GPUs as digital 

beamformers. We specify a parallel implementation of a 

beamformer in time and frequency domain and measure its 

performance. We also give examples of the processing 

limits of NVIDIA Geforce 8800 GPU with respect to 

application parameters: number of sensors, sampling 

frequency, bandwidth, and number of simultaneous beams.  

The results are compared to those of algorithms similarly 

implemented on a Intel Xeon CPU. We find that the GPU is 

able to process a larger amount of information than the 

CPU, and that it can be used as a digital beamformer for 

arrays with a large number of elements sampled at high 

rates. Exact results are given for the abovementioned 

application parameters. 

 

Index Terms— Array signal processing, parallel 

processing. 

 

1. INTRODUCTION 

 

In many signal processing applications it is necessary to 

perform beamforming on the data received from an array of 

sensors. The objective of the beamformer is to align in 

time/phase the signals arriving at the sensors from a certain 

direction, so that they can be added coherently. This means 

that signals coming from all other directions will be added 

incoherently, and as a consequence attenuated.  

Beamforming is a data-intensive task, in which samples 

from large number of sensors are combined to one or more 

output channels (beams) through different arithmetic 

operations, depending on the algorithm in question. Most 

beamforming algorithms for sensor arrays of moderate size 

have traditionally not been well suited for implementation 

on general (application non-specific), programmable 

computers; and are therefore usually confined to DSP, 

FPGA, or ASIC implementations. Recently, a lot of 

attention has been paid to implementing data-intensive 

algorithms on Graphical Processing Units (GPUs), e.g. 

computer vision [1] and medical image reconstruction [2]. 

Implementing non-graphical algorithms has been facilitated 

by the release of the CUDA framework by NVIDIA [3]. In 

this article, we investigate the applicability of GPUs to 

digital beamforming. 

2. DIGITAL BEAMFORMING  

 

Our beamforming scenario will typically cover an array of 

M elements, generating an output signal of N samples from 

input signals. In its most basic form, beamforming can be 

performed as delay-and-sum: 

 

                    
yl[n] = wl,m[n ]xm[n � � l ,m[n]].

m=1

M
�                  (1) 

 

Here, yl[n]  is the output signal for the lth beam, 

xm[n]  is the input signal from element m at time n, 

wl,m[n ]  is the weight applied to the signal from element m 

at time n when contributing to the lth beam, and �m[n] is 

the delay applied to the signal from element m at time n 

when contributing to the lth beam. The n-dependence of the 

weights and delays can be disregarded in many applications. 

If the signal is complex and narrow-band, the beamformer 

can be expressed as 

  

� 
y =

� 
w H X ,   (2) 

where X  is the data matrix, and w  can represent: a) 

phase shifts and spatial tapering; b) optimal (e.g. Capon) 

weights, see [4]. The input data matrix can be written as 

 

     

X =

x1[ 0]    x1[1] �   x1[ N � 1]

x2[ 0]    x2[1] �   x2[ N � 1]

x3[ 0]    x3[1] �   x3[ N � 1]

� � � �

xM [ 0]   xM [1] �  xM [ N � 1]

� 

� 

� 
� 
� 
� 

� 

� 

	 
	 
	 
	 

� X[ ]
m,n

= xm[ n � 1]
     (3) 

 

On a computer, it can be stored in either a row-major or a 

column-major format, making access sequential across time 

or space, respectively. 

As seen above, operations in beamforming algorithms 

can be written as linear algebra, which is a suitable form of 

implementation on the GPU. 

 

3. EFFICIENT IMPLEMENTATION ON A GPU 

 

3.1. The GPU as a general parallel processing model 

 

We will not go into the details about GPU structure, as this 

is outside the scope of this paper. The interested reader is 
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referred to [5] for more information. Suffice it to say, the 

GPU can be seen as a parallel processor with two 

parallelization levels. On the first level, the tasks are divided 

across multiple processors with no means of communicating 

with each other. On the second level, the tasks on one 

processor are divided among different threads which can 

share information and be synchronized. In the CUDA 

framework, these levels are referred to as blocks and 

threads. In general, all processors will have access to one 

large memory pool (termed ”global” memory), supporting a 

low transfer rate. Each processor will additionally have its 

own, smaller memory pool (termed ”local” memory) 

supporting a high transfer rate. The initial input and final 

output is assumed to be located in the global memory. The 

execution of a parallel algorithm (called a kernel invocation) 

is initiated from a centralized control unit, which receives a 

notification when all processors have finished executing. 

The following should be taken into consideration when 

developing parallel algorithms: 

• Information used in two different blocks should not 

be read from the same location in global memory at 

the same time. Information coming from two 

different blocks must not be written to the same 

location in global memory. This restricts 

parallelization. 

• Information that is used by more than one thread in 

a block should be moved from global to local 

memory, before being used. This makes thread 

synchronization within a block necessary [6].  

 

3.2. Parallel execution 

 
If the GPU is to perform efficiently, algorithms must be 

suitably parallelized. We will talk about two levels of 

parallelization, level 1 (PL1) being the division between 

multiprocessors/blocks and level 2 (PL2) being the division 

between threads executing on each multiprocessor/block. 

Different parallelization schemes that have been considered 

are: 

1. PL1-parallelization in space (1): Each block fully 

forms one or more beams using all samples from 

all elements. This is problematic because two 

different beams are usually formed from the same 

input samples. The advantage is that the output 

data from each block will always be stored in 

different places in global memory. 

2. PL1-parallelization in space (2): Each block 

computes the contribution to all beams for all time 

indices for one single element. This is an 

impracticable approach, as neither reading from or 

writing to overlapping memory segments can be 

synchronized across processors and will lead to 

access conflicts. 

3. PL1-parallelization in frequency: Each block 

operates on one single frequency component across 

all elements, and performs beamforming for all 

beams. Reading from and writing to global 

memory is completely without overlap across 

blocks. This approach is only suited for frequency 

domain beamforming algorithms. Suitably 

parallelized batched versions of FFT and IFFT 

algorithms are implemented independently of the 

beamforming process. 

4. PL1-parallelization in time: Each block creates the 

output signal for one block in time, for all beams 

from all elements. This is the initially most 

satisfying solution with respect to parallelization, 

because all blocks read from and write to separate 

locations of global memory. It does however pose a 

problem for real-time systems, as a larger delay 

must be introduced in the system to fully exploit 

the multiple processors for parallelization. 

It is possible to interchange schemes 1 and 4 by 

duplicating sample blocks in device memory, and acting on 

different instances of the same samples as if they were 

temporally disjoint blocks. The same applies to scheme 3, 

when exchanging temporal samples for DFT-coefficients. 

 
3.3. Memory considerations 

 

Data transfer between the CPU and the GPU is a time 

consuming operation, and should be avoided when possible. 

Additionally, data should be transferred as a few large 

blocks instead of a larger number of small ones. Accessing 

data from the global memory on the GPU is optimal when 

we allow operations across threads to be coalesced. This 

means that a sequence of N different memory accesses for 

single samples is interpreted as one large memory access 

covering all N samples. This is only possible when the 

addresses are: 

1. Sequential. 

2. Aligned (meaning that the starting address must be 

a multiple of the alignment size, which in this case 

is 68 bytes or 16 single precision floating point 

values). 

PL2-parallelization should therefore be performed in a 

dimension in which the data-matrix is sequential. We see 

from Eq. 2 that reasonable sequences would be across 

elements or temporal samples for each block. The question 

of alignment will be discussed later. 

 

4. IMPLEMENTING A BEAMFORMER IN THE 

TIME DOMAIN 

 

A time domain beamformer (TDBF) can be implemented 

directly from Eq. (1). To generate each output sample, the 

corresponding input samples from all channels are fetched 

from memory, multiplied by different weights, and added 

together. 
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Fig. 1: Naive time domain implementation. Memory access when 

creating one output sample is generally scattered across a block of 

samples, regardless of the order in which the samples are stored. 

 

Fig. 2: Optimal time domain implementation. Samples are read 

from memory in their stored order, shifted, and placed in local 

memory. Summations with intermediate results are performed 

upon placement. 

A disadvantage of TDBF with respect to GPU 

implementation is that memory access is not sequential 

across channels, as shown in Fig. 1, which makes 

parallelization in the spatial dimension less efficient due to 

time consuming memory access. Memory access across time 

for one single channel is sequential for time-invariant 

delays, but generally not aligned unless the difference 

between delays are restricted to being integer multiples of 

the alignment block size. This can be fixed by moving an 

entire block of sequential and aligned samples from global 

to shared memory, performing the entire beamforming in 

local memory, and moving the beamformed output back to 

aligned global memory. This can be problematic, as the 

available pool of local memory is often quite small (16 kb 

per block on the Nvidia GeForce 8800). Another method is 

the following: 
n=aA where a is an integer; A is the alignment size; ixt is the 

thread number from 0 to T-1; ixb is the block number from 0 

to B-1. 

1. �max is maxm{del[ixb,m]} 

2. for m=1:M 

local_out[�max + ixt – delay[ixb,m]] += w[m]global_in[n 

+ ixt] 

3. global_out[ixt] = local_out[2�max +ixt] 

 

This implementation assures sequential and aligned 

memory access across time both when reading and writing 

samples. The delay has been moved from input to output, as 

illustrated in Fig. 2, which does not affect the result as long 

as there is a one-to-one index mapping between the output 

samples for one beam and the input samples from one 

channel. This is always the case when the delays are time 

invariant. The algorithm is visualized in Fig. 3, where the 

gray cells represent input samples that contribute to a block 

of output samples. By processing the aligned region from n 

� [�max, 3�max + N], and adding to results in the region n � [0, 

4�max + N], we get N samples of usable output data in the 

region n � [2�max, 2�max+N]. The region n � [2�max+N, 

4�max+N] can be shifted to n � [0, 2�max] before the next 

iteration of the algorithm. We observe that global memory 

access is performed on lines 2 (reading) and 3 (writing), 

while the intermediate results are stored in local memory. 
 

 

Fig. 3: Memory access for TD beamformer. Elements from the read 

region are placed within the write region. Only elements in the 

middle block of size N will be fully usable after each iteration. 

 
5. IMPLEMENTING A BEAMFORMER IN THE 

FREQUENCY DOMAIN 

 

We implement a frequency domain beamformer (FDBF) by 

taking the DFT of a block of samples, and then applying 

steering to each frequency component in the form of phase 

shifts. The frequency domain beamforming algorithm can be 

written as: 
1. Perform MxN-point DFTs: Xm[k] = DFT{xm[n]}, 

m=0,…,M-1, k=0,…,N-1 

2. For each frequency bin k=0,..., N-1 

Yl[k] = SlXm[k] 

3. Perform LxN-point IDFTs: yl[n] = IDFT{Yl[k]} 

 

The disadvantage of FDBF is that it involves additional 

computational complexity due a DFT for each sensor and an 

IDFT for each output beam. These can be efficiently 

implemented as FFTs on both CPU and GPU. The general 

advantage of FDBF is that most advanced beamforming 

algorithms assume narrow-band signals, and in the discrete 

frequency domain each frequency of a broadband signal can 
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be processed independently as a narrow-band signal. It also 

allows most operations to be represented as matrix or vector 

multiplication, which can be quickly implemented using 

available functions. The advantage of FDBF with respect to 

GPU implementation is that data-access is always sequential 

in time and can be made aligned across sensors, which 

offers increased performance due to faster memory access. 

This is assuming that the data matrix of Eq. 2 is stored in a 

row-major format. Alignment is assured by padding the data 

with zeros so that the number of samples stored for one time 

index is a multiple of the alignment size. 

 

6. RESULTS AND CONCLUSION 

 

We have implemented TDBF and FDBF on both the CPU 

and GPU. The CPU implementation was done using Intel 

Math Kernel Library 10.0 (BLAS for FDBF and VML for 

TDBF) and the measurements were performed on a Xeon 

Quad-Core CPU. The GPU implementation was done using 

Nvidia CUDA (CUBLAS for FDBF) and the measurements 

were performed on a Nvidia GeForce 8800 GPU. Memory 

access was similarly sequential and aligned for both 

processors, to assure a fair comparison. 

In Tab. I we have recorded the average running times 

for TDBF and FDBF algorithms when using arrays with 

sizes varying from 76 to 1216 elements. The arrays 

simulated are uniformly spaced linear arrays, which does 

not restrict the validity of the measurements as no special 

optimization due to their regular structure is applied. It is 

observed that the GPU performs TDBF faster than the CPU 

almost by an order of magnitude. The FDBF is performed 

using about 16% of the time used by the CPU. 

The number of samples generated by the beamformer, 

as reported in Tab. II, can contribute to either different 

beams or different time blocks. For instance when 

considering a 152-element array, the GPU can generate 

output of some 16 Msamples/sec. These samples can be 

divided into L beams for signals with sampling rates of 16/L 

MHz. If L=1, then signals with sampling rates up to 16 MHz 

are supported by this implementation.  

These measurements should be regarded as indicative 

of actual performance, since these experiments have been 

performed on a single type of CPU/GPU and for a general 

beamformer. Results will vary when application-specific 

considerations are taken into account. The comparisons are 

made for what is thought to be fairly equal implementations 

of identical algorithms. Some points to consider are: 

• The transfer of input and output samples to and 

from the GPU is time consuming for both GPU and 

CPU. 

• The CPU time used to transfer data to and from the 

GPU is less than what is used by the CPU for 

performing the actual algorithm, thus freeing the 

CPU to do other work, like communicating with a 

user. 

Based on the results presented in this paper, it is our 

conclusion that using the GPU is a viable solution for 

performing digital beamforming on off-the-shelf hardware, 

even for large arrays sampled at high rates. 

TABLE I.  RESULTS 1 

Measured Running Times 

Array 

Size 

GPU  

TD(s) 

GPU 

FD(s) 

CPU 

TD(s) 

CPU 

FD(s) 

G/C 

TD(%) 

G/C 

FD(%) 

76 0.028  0.027 0.240 0.180 11.6 11.3 

152 0.059  0.053 0.490 0.354 12.2 15.0 

304 0.114  0.109 0.980 0.691 11.6 15.8 

608 0.224 0.213 1.950 1.370 11.5 15.5 

1216 0.445 0.423 3.890 2.720 11.5 15.5 

The numbers in columns two through five are given in seconds. 

The numbers in the last two columns describe the time ratio GPU 

to CPU. The measurements are based on 1 Msamples of data per 

sensor. 

TABLE II.  RESULTS 2 

Processing Capabilities (Msamples/sec.) 

Array 

Size 

GPU  

TD 

GPU 

FD 

CPU 

TD 

CPU 

FD 

G/C 

TD(%) 

G/C 

FD(%) 

76 35.7  37.0 4.2 5.6 850 660 

152 16.9  18.9 2.0 2.8 850 680 

304 8.8  9.2 1.0 1.4 880 660 

608 4.5 4.7 0.5 0.7 900 670 

1216 2.2 2.4 0.3 0.4 730 600 

The numbers given in columns two through five are given in 

Msamples/second. The numbers in the last two columns describe 

the ratio GPU to CPU. 
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