
DIGITAL BEAMFORMING USING A GPU

Carl-Inge Colombo Nilsen, Ines Hafizovic

Department of Informatics, University of Oslo, Norway

SquareHead Technology AS, Norway

ABSTRACT

In this paper we investigate the use of GPUs as digital

beamformers. We specify a parallel implementation of a

beamformer in time and frequency domain and measure its

performance. We also give examples of the processing

limits of NVIDIA Geforce 8800 GPU with respect to

application parameters: number of sensors, sampling

frequency, bandwidth, and number of simultaneous beams.

The results are compared to those of algorithms similarly

implemented on a Intel Xeon CPU. We find that the GPU is

able to process a larger amount of information than the

CPU, and that it can be used as a digital beamformer for

arrays with a large number of elements sampled at high

rates. Exact results are given for the abovementioned

application parameters.

Index Terms— Array signal processing, parallel

processing.

1. INTRODUCTION

In many signal processing applications it is necessary to

perform beamforming on the data received from an array of

sensors. The objective of the beamformer is to align in

time/phase the signals arriving at the sensors from a certain

direction, so that they can be added coherently. This means

that signals coming from all other directions will be added

incoherently, and as a consequence attenuated.

Beamforming is a data-intensive task, in which samples

from large number of sensors are combined to one or more

output channels (beams) through different arithmetic

operations, depending on the algorithm in question. Most

beamforming algorithms for sensor arrays of moderate size

have traditionally not been well suited for implementation

on general (application non-specific), programmable

computers; and are therefore usually confined to DSP,

FPGA, or ASIC implementations. Recently, a lot of

attention has been paid to implementing data-intensive

algorithms on Graphical Processing Units (GPUs), e.g.

computer vision [1] and medical image reconstruction [2].

Implementing non-graphical algorithms has been facilitated

by the release of the CUDA framework by NVIDIA [3]. In

this article, we investigate the applicability of GPUs to

digital beamforming.

2. DIGITAL BEAMFORMING

Our beamforming scenario will typically cover an array of

M elements, generating an output signal of N samples from

input signals. In its most basic form, beamforming can be

performed as delay-and-sum:

yl[n] = wl,m[n]xm[n � � l ,m[n]].

m=1

M
� (1)

Here, yl[n] is the output signal for the lth beam,

xm[n] is the input signal from element m at time n,

wl,m[n] is the weight applied to the signal from element m

at time n when contributing to the lth beam, and �m[n] is

the delay applied to the signal from element m at time n

when contributing to the lth beam. The n-dependence of the

weights and delays can be disregarded in many applications.

If the signal is complex and narrow-band, the beamformer

can be expressed as

�
y =

�
w H X , (2)

where X is the data matrix, and w can represent: a)

phase shifts and spatial tapering; b) optimal (e.g. Capon)

weights, see [4]. The input data matrix can be written as

X =

x1[0] x1[1] � x1[N � 1]

x2[0] x2[1] � x2[N � 1]

x3[0] x3[1] � x3[N � 1]

� � � �

xM [0] xM [1] � xM [N � 1]

�

�

�
�
�
�

�

�

	
	
	
	

� X[]
m,n

= xm[n � 1]
 (3)

On a computer, it can be stored in either a row-major or a

column-major format, making access sequential across time

or space, respectively.

As seen above, operations in beamforming algorithms

can be written as linear algebra, which is a suitable form of

implementation on the GPU.

3. EFFICIENT IMPLEMENTATION ON A GPU

3.1. The GPU as a general parallel processing model

We will not go into the details about GPU structure, as this

is outside the scope of this paper. The interested reader is

609978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009

referred to [5] for more information. Suffice it to say, the

GPU can be seen as a parallel processor with two

parallelization levels. On the first level, the tasks are divided

across multiple processors with no means of communicating

with each other. On the second level, the tasks on one

processor are divided among different threads which can

share information and be synchronized. In the CUDA

framework, these levels are referred to as blocks and

threads. In general, all processors will have access to one

large memory pool (termed ”global” memory), supporting a

low transfer rate. Each processor will additionally have its

own, smaller memory pool (termed ”local” memory)

supporting a high transfer rate. The initial input and final

output is assumed to be located in the global memory. The

execution of a parallel algorithm (called a kernel invocation)

is initiated from a centralized control unit, which receives a

notification when all processors have finished executing.

The following should be taken into consideration when

developing parallel algorithms:

• Information used in two different blocks should not

be read from the same location in global memory at

the same time. Information coming from two

different blocks must not be written to the same

location in global memory. This restricts

parallelization.

• Information that is used by more than one thread in

a block should be moved from global to local

memory, before being used. This makes thread

synchronization within a block necessary [6].

3.2. Parallel execution

If the GPU is to perform efficiently, algorithms must be

suitably parallelized. We will talk about two levels of

parallelization, level 1 (PL1) being the division between

multiprocessors/blocks and level 2 (PL2) being the division

between threads executing on each multiprocessor/block.

Different parallelization schemes that have been considered

are:

1. PL1-parallelization in space (1): Each block fully

forms one or more beams using all samples from

all elements. This is problematic because two

different beams are usually formed from the same

input samples. The advantage is that the output

data from each block will always be stored in

different places in global memory.

2. PL1-parallelization in space (2): Each block

computes the contribution to all beams for all time

indices for one single element. This is an

impracticable approach, as neither reading from or

writing to overlapping memory segments can be

synchronized across processors and will lead to

access conflicts.

3. PL1-parallelization in frequency: Each block

operates on one single frequency component across

all elements, and performs beamforming for all

beams. Reading from and writing to global

memory is completely without overlap across

blocks. This approach is only suited for frequency

domain beamforming algorithms. Suitably

parallelized batched versions of FFT and IFFT

algorithms are implemented independently of the

beamforming process.

4. PL1-parallelization in time: Each block creates the

output signal for one block in time, for all beams

from all elements. This is the initially most

satisfying solution with respect to parallelization,

because all blocks read from and write to separate

locations of global memory. It does however pose a

problem for real-time systems, as a larger delay

must be introduced in the system to fully exploit

the multiple processors for parallelization.

It is possible to interchange schemes 1 and 4 by

duplicating sample blocks in device memory, and acting on

different instances of the same samples as if they were

temporally disjoint blocks. The same applies to scheme 3,

when exchanging temporal samples for DFT-coefficients.

3.3. Memory considerations

Data transfer between the CPU and the GPU is a time

consuming operation, and should be avoided when possible.

Additionally, data should be transferred as a few large

blocks instead of a larger number of small ones. Accessing

data from the global memory on the GPU is optimal when

we allow operations across threads to be coalesced. This

means that a sequence of N different memory accesses for

single samples is interpreted as one large memory access

covering all N samples. This is only possible when the

addresses are:

1. Sequential.

2. Aligned (meaning that the starting address must be

a multiple of the alignment size, which in this case

is 68 bytes or 16 single precision floating point

values).

PL2-parallelization should therefore be performed in a

dimension in which the data-matrix is sequential. We see

from Eq. 2 that reasonable sequences would be across

elements or temporal samples for each block. The question

of alignment will be discussed later.

4. IMPLEMENTING A BEAMFORMER IN THE

TIME DOMAIN

A time domain beamformer (TDBF) can be implemented

directly from Eq. (1). To generate each output sample, the

corresponding input samples from all channels are fetched

from memory, multiplied by different weights, and added

together.

610

Fig. 1: Naive time domain implementation. Memory access when

creating one output sample is generally scattered across a block of

samples, regardless of the order in which the samples are stored.

Fig. 2: Optimal time domain implementation. Samples are read

from memory in their stored order, shifted, and placed in local

memory. Summations with intermediate results are performed

upon placement.

A disadvantage of TDBF with respect to GPU

implementation is that memory access is not sequential

across channels, as shown in Fig. 1, which makes

parallelization in the spatial dimension less efficient due to

time consuming memory access. Memory access across time

for one single channel is sequential for time-invariant

delays, but generally not aligned unless the difference

between delays are restricted to being integer multiples of

the alignment block size. This can be fixed by moving an

entire block of sequential and aligned samples from global

to shared memory, performing the entire beamforming in

local memory, and moving the beamformed output back to

aligned global memory. This can be problematic, as the

available pool of local memory is often quite small (16 kb

per block on the Nvidia GeForce 8800). Another method is

the following:
n=aA where a is an integer; A is the alignment size; ixt is the

thread number from 0 to T-1; ixb is the block number from 0

to B-1.

1. �max is maxm{del[ixb,m]}

2. for m=1:M

local_out[�max + ixt – delay[ixb,m]] += w[m]global_in[n

+ ixt]

3. global_out[ixt] = local_out[2�max +ixt]

This implementation assures sequential and aligned

memory access across time both when reading and writing

samples. The delay has been moved from input to output, as

illustrated in Fig. 2, which does not affect the result as long

as there is a one-to-one index mapping between the output

samples for one beam and the input samples from one

channel. This is always the case when the delays are time

invariant. The algorithm is visualized in Fig. 3, where the

gray cells represent input samples that contribute to a block

of output samples. By processing the aligned region from n

� [�max, 3�max + N], and adding to results in the region n � [0,

4�max + N], we get N samples of usable output data in the

region n � [2�max, 2�max+N]. The region n � [2�max+N,

4�max+N] can be shifted to n � [0, 2�max] before the next

iteration of the algorithm. We observe that global memory

access is performed on lines 2 (reading) and 3 (writing),

while the intermediate results are stored in local memory.

Fig. 3: Memory access for TD beamformer. Elements from the read

region are placed within the write region. Only elements in the

middle block of size N will be fully usable after each iteration.

5. IMPLEMENTING A BEAMFORMER IN THE

FREQUENCY DOMAIN

We implement a frequency domain beamformer (FDBF) by

taking the DFT of a block of samples, and then applying

steering to each frequency component in the form of phase

shifts. The frequency domain beamforming algorithm can be

written as:
1. Perform MxN-point DFTs: Xm[k] = DFT{xm[n]},

m=0,…,M-1, k=0,…,N-1

2. For each frequency bin k=0,..., N-1

Yl[k] = SlXm[k]

3. Perform LxN-point IDFTs: yl[n] = IDFT{Yl[k]}

The disadvantage of FDBF is that it involves additional

computational complexity due a DFT for each sensor and an

IDFT for each output beam. These can be efficiently

implemented as FFTs on both CPU and GPU. The general

advantage of FDBF is that most advanced beamforming

algorithms assume narrow-band signals, and in the discrete

frequency domain each frequency of a broadband signal can

611

be processed independently as a narrow-band signal. It also

allows most operations to be represented as matrix or vector

multiplication, which can be quickly implemented using

available functions. The advantage of FDBF with respect to

GPU implementation is that data-access is always sequential

in time and can be made aligned across sensors, which

offers increased performance due to faster memory access.

This is assuming that the data matrix of Eq. 2 is stored in a

row-major format. Alignment is assured by padding the data

with zeros so that the number of samples stored for one time

index is a multiple of the alignment size.

6. RESULTS AND CONCLUSION

We have implemented TDBF and FDBF on both the CPU

and GPU. The CPU implementation was done using Intel

Math Kernel Library 10.0 (BLAS for FDBF and VML for

TDBF) and the measurements were performed on a Xeon

Quad-Core CPU. The GPU implementation was done using

Nvidia CUDA (CUBLAS for FDBF) and the measurements

were performed on a Nvidia GeForce 8800 GPU. Memory

access was similarly sequential and aligned for both

processors, to assure a fair comparison.

In Tab. I we have recorded the average running times

for TDBF and FDBF algorithms when using arrays with

sizes varying from 76 to 1216 elements. The arrays

simulated are uniformly spaced linear arrays, which does

not restrict the validity of the measurements as no special

optimization due to their regular structure is applied. It is

observed that the GPU performs TDBF faster than the CPU

almost by an order of magnitude. The FDBF is performed

using about 16% of the time used by the CPU.

The number of samples generated by the beamformer,

as reported in Tab. II, can contribute to either different

beams or different time blocks. For instance when

considering a 152-element array, the GPU can generate

output of some 16 Msamples/sec. These samples can be

divided into L beams for signals with sampling rates of 16/L

MHz. If L=1, then signals with sampling rates up to 16 MHz

are supported by this implementation.

These measurements should be regarded as indicative

of actual performance, since these experiments have been

performed on a single type of CPU/GPU and for a general

beamformer. Results will vary when application-specific

considerations are taken into account. The comparisons are

made for what is thought to be fairly equal implementations

of identical algorithms. Some points to consider are:

• The transfer of input and output samples to and

from the GPU is time consuming for both GPU and

CPU.

• The CPU time used to transfer data to and from the

GPU is less than what is used by the CPU for

performing the actual algorithm, thus freeing the

CPU to do other work, like communicating with a

user.

Based on the results presented in this paper, it is our

conclusion that using the GPU is a viable solution for

performing digital beamforming on off-the-shelf hardware,

even for large arrays sampled at high rates.

TABLE I. RESULTS 1

Measured Running Times

Array

Size

GPU

TD(s)

GPU

FD(s)

CPU

TD(s)

CPU

FD(s)

G/C

TD(%)

G/C

FD(%)

76 0.028 0.027 0.240 0.180 11.6 11.3

152 0.059 0.053 0.490 0.354 12.2 15.0

304 0.114 0.109 0.980 0.691 11.6 15.8

608 0.224 0.213 1.950 1.370 11.5 15.5

1216 0.445 0.423 3.890 2.720 11.5 15.5

The numbers in columns two through five are given in seconds.

The numbers in the last two columns describe the time ratio GPU

to CPU. The measurements are based on 1 Msamples of data per

sensor.

TABLE II. RESULTS 2

Processing Capabilities (Msamples/sec.)

Array

Size

GPU

TD

GPU

FD

CPU

TD

CPU

FD

G/C

TD(%)

G/C

FD(%)

76 35.7 37.0 4.2 5.6 850 660

152 16.9 18.9 2.0 2.8 850 680

304 8.8 9.2 1.0 1.4 880 660

608 4.5 4.7 0.5 0.7 900 670

1216 2.2 2.4 0.3 0.4 730 600

The numbers given in columns two through five are given in

Msamples/second. The numbers in the last two columns describe

the ratio GPU to CPU.

7. ACKNOWLEDGEMENT

The authors wish to thank SquareHead Technology AS for

providing the necessary hardware and data for

implementation and testing.

8. REFERENCES

[1] J. Fung, S. Mann, “Computer vision signal processing on

graphics processing units,” in Proc. IEEE International
Conference on Acoustics, Speech and Signal Processing, vol.
5, pp. 79-88, May 2004.

[2] T. Sumanaweera, D. Liu, “Medical image reconstruction with
the FFT,” in GPU Gems 2, M. Pharr, Ed. Addison Wesley,
2005, ch. 48, pp. 765-784.

[3] CUDA Zone: http://www.nvidia.com/cuda/

[4] Van Trees, H.L., Optimum Array Processing. Wiley-
Interscience, 2002.

[5] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J.
Krüger, S. E. Lefohn, and T. J. Purcell, “A survey of general-
purpose computation on graphics hardware,” in Computer
Graphics Forum, vol. 26, 2007, pp. 80-113.

[6] CUDA 2.0 Programming Guide:
http://developer.download.nvidia.com/compute/cuda/2_0/docs
/NVIDIA_CUDA_Programming_Guide_2.0.pdf

612

