
AN OVERLAP SAVE ALGORITHM FOR BLOCK CONVOLUTION WITH REDUCED
COMPLEXITY

Jung Gap Kuk, Se Yoon Kim and Nam Ik Cho

Seoul National University
School of Electrical Engineering

Seoul 151-744, Korea
Email : jg-kuk@ispl.snu.ac.kr, light4u@ispl.snu.ac.kr and nicho@snu.ac.kr

ABSTRACT
We propose a block convolution algorithm that requires

shorter length FFT than the conventional overlap save al-

gorithm (OSA). It is shown that the OSA can be split into

two separate processes related to the previous and current

data blocks. Hence, only current data block needs to be

transformed in the proposed OSA, whereas the concatenated

block of previous and current data is transformed in the con-

ventional method. As a result, the number of arithmetic

operations for the block convolution is reduced. Also, the

reduced transform size gives additional advantage in data

manipulation when implemented on DSP and PC.

Index Terms— Block Convolution, Overlap Save Algo-

rithm, Fast Fourier Transform (FFT)

1. INTRODUCTION

It is well known that the block convolution is often imple-

mented by OSA using the FFT [1]. There is another approach

using the number theoretic transform, which has advantages

when implemented in fixed point arithmetic [2]. There are

also variants of block convolution methods considering many

aspects of implementation such as input-output delay and

hardware/software realizations [3, 4]. For the software imple-

mentation of block convolution on modern computers with

floating point arithmetics, the conventional OSA is still the

most popular method because of its simple data manipulation

and the availability of powerful FFT libraries. For example,

audio processing that requires large length convolutions em-

ploys the conventional OSA as a basic building block [5, 6],

and the block adaptive filtering is also implemented with

conventional OSA [7]. Hence, we focus on the reduction of

computations in the conventional OSA, and propose a new

algorithm that requires the half-sized transform. The pro-

posed algorithm separates the computations required for the

previous and current block, whereas the conventional OSA

computes the transform of the overall block at once. For

the efficient implementation of this scheme, a new transform

is required, which will be called quarter-DFT (QDFT). The

QDFT can be implemented by twiddle factor multiplications

to the input followed by a standard DFT. Comparison of

computational complexity shows that the OSA based on the

proposed QDFT reduces the number of arithmetic operations

in proportion to the transform length. In addition to reduced

computational complexity, the reduction of transform size

gives additional advantage of reduced memory access time,

which is demonstrated by comparing the computation times

taken by the proposed and conventional methods on PC and

DSP.

The rest of this paper is organized as follows. We sum-

marize the notation and review the conventional OSA in Sec-

tion 2. The proposed algorithm is presented in Section 3, and

computational complexity analysis and the results of imple-

mentation on DSP and PC are shown in Section 4. Finally,

conclusions are given in Section 5 and issue for and efficient

implementation of QDFT is discussed in Section 6.

2. REVIEW OF OSA

We first summarize notations and definitions used in the rest

of paper, and then review the conventional OSA.

2.1. Summary of Notations and Definitions

L : Filter length

M : Number of input data at each step in OSA, M ≥ L
N = 2M , the size of overall block in OSA

sn : Input sequence

hn : Filter coefficients (n = 0, 1, · · · , L − 1)

rn : Output sequence (Result of linear convolution sn ∗ hn)

WN = e−j 2π
N

xp : Previous data vector of size M in OSA

xc : Current data vector of size M in OSA

x = [x0, x1, · · · , xN−1]T = [xT
p : xT

c]T

f = [h0, h1, · · · , hL−1, 0, · · · , 0]T

(Size = M . Zeros are padded when M > L)

0M : zero vector of size M
g = [g0, g1, · · · , gN−1]T = [fT : 0T

M]T

605978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009

y = [y0, y1, · · · , yN−1]T : temporary output vector

(circular convolution of g and x)

DK : DFT matrix of size K
((n, k)-th element is Wnk

K)

ΘK : odd-DFT (ODFT) matrix of size K

((n, k)-th element is W
n(k+1/2)
K)

QK : quarter-DFT (QDFT) matrix of size K

((n, k)-th element is W
n(k+3/4)
K)

Xd = (DN)x, Xθ = (ΘN)x, Xq = (QN)x
Gd = (DN)g, Gθ = (ΘN)g, Gq = (QN)g
Fd = (DM)f , Fθ = (ΘM)f , Fq = (QM)f
Xd

p = (DM)xp, Xθ
p = (ΘM)xp, Xq

p = (QM)xp

Xd
c = (DM)xc, Xθ

c = (ΘM)xc Xq
c = (QM)xc

Xe,Xo : vectors of even and odd indexed elements of Xd

Ge,Go : vectors of even and odd indexed elements of Gd

2.2. Conventional OSA

Using above notations, the conventional OSA can be summa-

rized as follows:

Prepare Gd. Copy xc into xp, and get a block of new M
data {sn, sn+1, · · · , sn+M−1} into xc. Compute Xd, and let

(Xd ⊗ Gd) be Y, where ⊗ implies element-wise multipli-

cation. Perform IDFT on Y to get y, discard the first half

of data and save the last half. The saved data is the desired

output {rn, · · · , rn+M−1}. Above process is repeated for the

next data block (except for the preparation of Gd).

3. PROPOSED ALGORITHM

The main idea of proposed algorithm is to separate the com-

putations for previous and current block in OSA. Then, we

exploit the computations that were already performed for the

previous block, when computing the convolution for the cur-

rent block. This is based on the observation of decimation-

in-frequency FFT algorithm, where the DFT Xd is split into

shorter transforms as

[
Xe

Xo

]
=

[
DM DM

ΘM −ΘM

] [
xp

xc

]
. (1)

From this, the OSA can also be split into the computation of

even and odd indexed terms. That is, splitting Gd into Ge

and Go, spectral multiplication with Xe and Xo, followed by

inverse transform gives the circular convolution result, which

is denoted as

y =
[

D−1
M Θ−1

M

D−1
M −Θ−1

M

] [
Ge ⊗ Xe

Go ⊗ Xo

]
. (2)

But, since first half of g is f and the rest is 0M , we have

[
Ge

Go

]
=

[
DM DM

ΘM −ΘM

] [
f

0M

]
=

[
Fd

Fθ

]
. (3)

Also from (1) and the definitions, it can be seen that Xe =
Xd

p+Xd
c and Xo = Xθ

p−Xθ
c . Hence, the circular convolution

in (2) can be rewritten as

y =
[

D−1
M Θ−1

M

D−1
M −Θ−1

M

] [
Fd ⊗ (Xd

p + Xd
c)

Fθ ⊗ (Xθ
p − Xθ

c)

]
(4)

which can be separated into the computations of previous and

current blocks as

y =
[

D−1
M (Fd ⊗ Xd

p) + Θ−1
M (Fθ ⊗ Xθ

p)
D−1

M (Fd ⊗ Xd
p) − Θ−1

M (Fθ ⊗ Xθ
p)

]
+

[
D−1

M (Fd ⊗ Xd
c) − Θ−1

M (Fθ ⊗ Xθ
c)

D−1
M (Fd ⊗ Xd

c) + Θ−1
M (Fθ ⊗ Xθ

c)

]
.

(5)

In the computation for the current block (the second term in

the above equation), it seems that two kinds of convolution

are needed, namely D−1
M (Fd ⊗ Xd

c) and Θ−1
M (Fθ ⊗ Xθ

c).
For the convenience in notations and analysis, let us consider

D−1
N (Gd ⊗ Xd) and Θ−1

N (Gθ ⊗ Xθ) instead of the above

M -point transforms, without loss of generality. In the time

domain, D−1
N (Gd ⊗Xd) corresponds to the standard circular

convolution as

yn =
n∑

k=0

xkgn−k +
N−1∑

k=n+1

xkgn−k+N . (6)

and Θ−1
N (Gθ ⊗ Xθ) corresponds to the skew circular convo-

lution as

yn =
n∑

k=0

xkgn−k −
N−1∑

k=n+1

xkgn−k+N . (7)

Hence, the addition of the two terms D−1
N (Gd ⊗ Xd) +

Θ−1
N (Gθ ⊗ Xθ) corresponds to time domain computation

yn =
n∑

k=0

xkgn−k, (8)

and the subtraction D−1
N (Gd ⊗ Xd) − Θ−1

N (Gθ ⊗ Xθ) to

yn =
N−1∑

k=n+1

xkgn−k+N . (9)

It is found that these two terms can actually be obtained from

a single transform domain processing “QDFT.” As defined in

section 2, the input-output relationship of N -point QDFT is

Xq
k =

N−1∑
n=0

xnW
n(k+ 3

4)

N . (10)

It can be easily shown that the spectral multiplication and in-

verse transform in the QDFT domain, i.e., Q−1
N (Gq ⊗ Xq)

corresponds to the time domain computation given by

606

yn =
n∑

k=0

xkgn−k + j
N−1∑

k=n+1

xkgn−k+N . (11)

Comparing (8) and (9) with (11), we can see that the real

part of Q−1
N (Gq ⊗ Xq) is equivalent to D−1

N (Gd ⊗ Xd) +
Θ−1

N (Gθ ⊗Xθ) and the imaginary part to D−1
N (Gd ⊗Xd)−

Θ−1
N (Gθ ⊗ Xθ). In the same manner, it can be shown that

D−1
M (Fd⊗Xd

c)+Θ−1
M (Fθ⊗Xθ

c) in (5) can be replaced by the

real part of Q−1
M (Fq ⊗Xq

c) and D−1
M (Fd⊗Xd

c)−Θ−1
M (Fθ ⊗

Xθ
c) by the imaginary part. In summary, (5) is equivalent to

y =
[�{Q−1

M (Fq ⊗ Xq
p)}

�{Q−1
M (Fq ⊗ Xq

p)}
]

+
[�{Q−1

M (Fq ⊗ Xq
c)}

�{Q−1
M (Fq ⊗ Xq

c)}
]

.

(12)

Hence, we need to compute only the second term (QDFT,

spectral multiplication, and IQDFT of current data block xc)

at each step. For describing the proposed algorithm with the

above notations, let us define new vectors of size M : v that

stores �{Q−1
M (Fq ⊗ Xq

p)}, and zr and zi that store the real

and imaginary part of Q−1
M (Fq ⊗ Xq

c) respectively. Then the

proposed algorithm can be summarized as follows :

Prepare Fq. Store zi into v. Get a new block of input data

into xc. Compute Xq
c . Compute Q−1

M (Fq ⊗ Xq
c) and store

the real part of this result into zr and the imaginary part to

zi. Then v+zr is the linear convolution result for the current

input data. Repeat above process for the next input block.

4. COMPLEXITY ANALYSIS

All the transforms in this paper are implemented based on the

radix-4 FFT which is widely used in DSP and PC library[8,

9]. And M is assumed to be power of 4 for the convenience of

complexity analysis. The computational complexity of radix-

4 FFT can be summarized as
μc

M = 3
8M log2 M

αc
M = M log2 M

μr
2M = 3

8M log2 M + 2M
αr

2M = M log2 M + M
where μn and αn mean the number of multiplications and ad-

ditions for the n-point transform respectively, and the super-

script c and r mean the complex and real data respectively. It

is noted that 2M point real FFT can be calculated efficiently

from the computation of one M point complex FFT with ad-

ditional 2M additions by simple data manipulation [8]. In the

case of conventional OSA, the 2M -point FFT is performed

on the real data. Then complex spectral multiplication is per-

formed, and IDFT on the complex data is performed. There-

fore, the total number of multiplications for the conventional

OSA is μr
2M + M + 1 + μr

2M , and the number of addition is

αr
2M + αr

2M .

Table 1. Computational complexity of block convolution

with DFT and QDFT

MULT ADD

DFT 3
4M log2 M + 5M + 1 2M log2 M + 2M

QDFT 3
4M log2 M + 3M 2M log2 M

Table 2. Number of arithmetic operations (sum of mults +

adds)

M DFT QDFT savings(%)

512 16257 14208 12.6

1024 35329 31232 11.6

2048 76289 68096 10.7

4096 163841 147456 10.0

From the input-output relationship of QDFT in eq. (10),

it can be seen that the QDFT can be implemented by twiddle

factor multiplication to the input (multiplication of W
3
4 n

N to

the n-th input), followed by standard DFT. Hence, the compu-

tational complexity for the block convolution with the QDFT

is : mult = M+μc
M +M+μc

M +M , and add = αc
M +αc

M +M ,

where the last M of add is for the real addition with the result

of previous block. These results are summarized in Table 1

with respect to the number of input data M . Also for several

lengths, specific numbers of arithmetic operations are com-

pared in Table 2.

It is evident that the advantage of the proposed algorithm

diminishes as the convolution length increases, because both

algorithms require O(M log2 M) complexity and the differ-

ence is just proportional to M . However, the long convolution

is usually split into smaller ones in order to reduce the output

delay which is inevitable in block processing[5, 6]. In other

words, the long convolution is usually implemented by many

of smaller length convolutions. In these practical implemen-

tations, replacing the conventional OSA by the proposed one

would greatly reduce the computation times.

The conventional and proposed algorithms are imple-

mented on two platforms - general PC equipped with Intel

Pentium 4 processor 3 GHz and Analog Devices BLACKFIN

533 DSP board. For PC implementation of Radix-4 FFT,

the state of art Intel IPP (Integrated Performance Primitives)

library[9] is exploited. FFT in technical library provided by

analog devices is used for DSP simulation. Convolutions are

performed for 100 different input data sequences, and the

averaged elapsed times are compared. Table 3 and Table 4

show the average elapsed times on PC and DSP respectively.

The savings of actual elapsed time in Table 3 are similar

in tendency to those in Table 2 but larger than expected. This

shows that the savings come not only from the reduced num-

607

ber of arithmetic (Table 2) but also from the reduced trans-

form length (N(= 2M) vs. M) which results in reduced data

access time when manipulating data. On the other hands, Ta-

ble 4 does not have similar tendency to the expected result

(Table 2). Generally DSP does not support sufficient hard-

ware resources such as cache and memory compared with

PC, and thus the time taken by memory access in DSP is

more influential to the overall performance than in the PC.

Hence the savings are getting larger as data size M increases.

However, we can see that there are abrupt increase in savings

when M = 1024 and abrupt decrease when M = 2048. In

the case of abrupt increase when M = 1024, severe increase

of elapsed time in the conventional method occurs due to the

limit of cache size and thus it causes the increase in savings.

On the other hand there is severe increase in the proposed

method when M = 2048 because proposed method can per-

form 2 times larger OSA under the same cache size than the

conventional method. Thus abrupt increase of elapsed time

in the proposed method results in decrease in savings when

M = 2048.

Table 3. Elapsed time of conventional OSA and proposed

OSA on PC (μs)

M conventional proposed savings(%)

512 14.69 10.89 25.87

1024 32.72 24.99 23.62

2048 67.40 54.30 19.44

4096 139.24 117.52 15.60

Table 4. Elapsed time of conventional OSA and proposed

OSA on DSP (μs)

M conventional proposed savings(%)

512 43.39 37.49 13.61

1024 121.49 83.12 31.58

2048 255.80 209.32 18.17

4096 613.51 423.84 30.92

5. CONCLUSIONS

We have proposed a new OSA that needs half size FFT com-

pared to he conventional OSA. Since the FFT is the main

process in the OSA, the proposed algorithm requires less

computations and memory access time than the conventional

method. The computations for the previous and current

blocks in OSA are completely separated, and each block is

efficiently computed by QDFT. The real part of QDFT do-

main convolution for current block plus the imaginary part of

previous is shown to be the linear convolution result for the

current block.

6. ACKNOWLEDGEMENT

This study is accomplished as a fundamental research project

(UD080015FD) of Defence Acquisition Program Administra-

tion (DAPA) and Agency for Defence Development (ADD).

7. REFERENCES

[1] A. V. Oppenhiem, R. W. Schafer, Discrete-Time Signal
Processing, Prentice-Hall, 1989.

[2] R. C. Agarwal, C. S. Burrus, “Number theoretic trans-

forms to implement fast digital convolution,” Proceed-
ings of IEEE, Vol. 63, No. 4, Apr. 1978, pp. 550 - 560.

[3] Z.-J. Mou, P. Duhamel, “Short-length FIR filters and

their use in fast nonrecursive filtering,” IEEE Trans. Sig-
nal Processingm Vol. 39, No. 6, June 1991, pp. 1322 -

1332.

[4] M. Vetterli, “Runni ng FIR and IIR filtering using mul-

tirate filter banks,” IEEE Trans. Acoust., Speech, Signal
Processing, Vol. 36, No. 5, May 1988, pp. 730 -738.

[5] W. G. Gardner, “Efficient convolution without input-

output delay,” Journal of Audio Engineering Society,

Vol. 43, No. 3, March 1995, pp. 127 - 136.

[6] A. Torger, A. Farina, “Real-time partitioned convolution

for ambiophonics surround sound,” IEEE Workshop on
Applications of Signal Processing to Audio and Acous-
tics, 21-24 October 2001, New Paltz, New York.

[7] J. J. Shynk, “Frequency-domain and multirate adaptive

filtering,” IEEE Signal Processing Magazine, Jan. 1992,

pp. 14 - 37.

[8] R. Matusiak, ”Implementing fast fourier transform algo-

rithms of real-valued sequences with the TMS320 DSP

family” Application Report of Texas Instruments, 1997

[9] Intel Performance Libraries. Intel Inte-
grated Performance Primitives website.
http://www3.intel.com/cd/software/products/asmona/eng/

perflib/302910.htm

608

