
A PARALLEL ARCHITECTURE FOR 3GPP2/UMB TURBO INTERLEAVERS

Mohammad M. Mansour

American University of Beirut
ECE Department
Beirut, Lebanon

Email: mmansour@aub.edu.lb

ABSTRACT

In this paper, an efficient architecture for a parallel pruned

turbo interleaver for 3GPP2/UMB physical layer standard [1]

is presented. Turbo interleaving in UMB turbo codes is based

on filling a 2D array row by row, interleaving each row us-

ing a linear congruential sequence, bit-reversing the order of

the rows, and then reading the interleaved addresses column

by column. Pruning creates a serial bottleneck since the in-

terleaved address of a linear address x is a function of the

number of pruned addresses up to x. An architecture based

on the parallel lookahead pruned interleaving algorithm pro-

posed in [2] is presented. The algorithm breaks this depen-

dency and interleaves any address in O(log2 x) steps by en-

abling a parallel turbo interleaver design with a desired de-

gree of parallelism. The architecture can be implemented ef-

ficiently in hardware using basic arithmetic building blocks.

Index Terms— Turbo codes, turbo interleavers

1. INTRODUCTION

After the introduction of turbo codes [3], the interest in de-

signing turbo interleavers and their corresponding efficient

architectures grew. An integral part of a turbo code is the

pseudo-random interleaver which produces a random-like

weight spectrum of codewords when used with systematic

feedback constituent convolutional encoders. Computation-

ally efficient turbo interleaving algorithms that tend to ap-

proximate the behavior of pseudo-random interleavers are

typically based on block interleavers that write a set of linear

addresses into a 2D array in one direction, apply independent

pseudo-random permutations to the row and column entries,

and then read the resulting reshuffled entries in the other

direction. To accommodate for flexible codeword lengths,

interleavers usually employ pruning to have a programmable

length. In pruned interleaving, a packet of length L is in-

terleaved by mapping n-bit addresses from linear order into

permuted order, where n is the smallest integer such that

This work was supported by funds from the University Research Board

at the American University of Beirut.

x = 0
cnt = 0

cnt = cnt + 1

x = x + 1

Y

N

(# of pruned addresses)

: permutation
: interleaver mapping with pruning

� � Lcntx ���

� � � �cntxLx ���� ,

�
�

Figure 1: Flowchart of a sequential pruned interleaver.

L ≤ 2n. Linear addresses that map to addresses greater than

L are pruned away. Other pruning techniques are discussed

in [4–7].

A major disadvantage of pruned interleavers is that, de-

spite their simplicity, interleaved addresses must be generated

sequentially. That is, in order to generate the interleaved ad-

dress corresponding to a linear address x, the interleaved ad-

dresses of all linear addresses less than x must first be gen-

erated. This follows from the fact that the number of pruned

addresses that have occurred before x must be known in or-

der to know where x gets mapped to. This requirement intro-

duces a latency bottleneck, especially when (de-)interleaving

and turbo encoding/decoding long packets. Fig. 1 shows the

flowchart of a generic pruned interleaver ψ that interleaves a

sequence of linear addresses from 0 to L − 1 according to

some permutation π with pruning.

In [8], the concept of parallel lookahead pruned inter-

leaving (PLPI) was introduced to address the disadvantage of

pruning latency on interleaver address generation, in particu-

lar, the feedback loop on the right in Fig. 1 that keeps track of

the number of pruned addresses. The scheme, as illustrated

in Fig. 2, interleaves a packet of length L in logarithmic time

complexity by dividing it into P blocks each of size N , in-

terleaving the P blocks in parallel, and then concatenating

the results. Each lookahead block in Fig. 2 (designated by φ)

computes the number of pruned addresses in the blocks to its

left, thus enabling each block to be interleaved independently

from the blocks preceding it. This results in a speedup by a

factor of P over the sequential scheme in Fig. 1. The compu-

601978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009

L

Permute
Block 0

0
(N – 1)

N

(0 : N – 1)

(P – 1)N

(N : 2N – 1)

2N

(2N : 3N – 1)

(2N – 1)

((P – 1)N : PN – 1)

Permute
Block 1

Permute
Block 2

Permute
Block P – 1

((P – 1)N – 1)

Figure 2: Parallel lookahead pruned interleaving scheme.

tations done by the lookahead φ-blocks depend on the under-

lying interleaving permutation; however, the overall scheme

applies to any sequentially pruned interleaver.

In this paper, we develop an efficient architecture based

on the PLPI scheme for turbo interleavers employed in the

emerging Ultra Mobile Broadband (UMB) standard part of

the 3rd Generation Partnership Project 2 (3GPP2) [1].

2. TURBO INTERLEAVING FOR UMB

The turbo interleaver adopted in UMB is based on linear con-

gruential sequences (LCS) [9]. The sequence of interleaver

output addresses generated by an LCS turbo interleaver is

equivalent to the sequence obtained by the following process.

A 2D-array is filled with a sequence of linear addresses row

by row from top to bottom, the entries of the array are shuffled

according to a procedure to be described next, and the result-

ing shuffled entries are read column by column from left to

right. The shuffling of the array entries is based on applying

an independent permutation to the entries in every row, and

then permuting the order of the rows. In UMB, the number of

rows is 2r = 32. Next, the smallest positive integer n such

that L ≤ 2r+n is determined. This is equivalent to finding the

smallest sized 2r × 2n array that can hold L entries. The 2n

entries of each row are interleaved independently using a LCS

recursion whose parameters are determined using a 2D look-

up table (LUT) based on the row index and n. This results in

a set of new interleaved column indices. Next, the 2r rows are

shuffled in bit-reversed order. The result of this operation is a

set of new interleaved row indices. Finally, the interleaved ad-

dresses are formed by concatenating the corresponding inter-

leaved column and row indices in opposite order with respect

to their order in the linear address. If the resulting interleaved

address is greater than or equal to L, then it is pruned away

and the same operations are repeated on the next consecutive

address in linear order.

Let x be an (r + n)-bit linear address, and ρr,n(x) be the

corresponding (r + n)-bit turbo-interleaved address [9]:

ρr,n(x) = 2n · πr(x mod 2r) +[[(⌊ x

2r

⌋
+ 1

)
mod 2n

]
× LUT (x mod 2r, n)

]
mod 2n (1)

where πr is the r-bit-reversal function [2] and LUT is a 2D

look-up table that stores the moduli of the 2r LCS recursions

for every n. Due to pruning of addresses, the address gener-

ated by ρr,n(x) in (1) is not always valid, and hence not all in-

tegers in the interval from 0 to x have valid mappings. Denote

by ψr,n(x, L) the function that generates valid addresses un-

der the mapping ρr,n(x) for all integers between 0 and x. Ob-

viously, if L = 2r+n, then there are no pruned addresses and

ψr,n(x, L) coincides with ρr,n(x). However, if L < 2r+n,

this equality no longer holds, but rather

ψr,n(x, L) = ρr,n (x + φr,n (x, L)) , (2)

where φr,n(x, L) is the minimum number to be added to x
such that the interval from 0 to x+φr,n(x, L) contains exactly

x + 1 valid addresses when mapped by (1). The problem

reduces to determining φr,n(x, L) [see Fig. 3].

x

� �Lxnr ,,	

)(,
nr� Interleaved
address

� �Lxnr ,,�Linear
address

invalid addresses

Figure 3: Relationship between φr,n, ρr,n, and ψr,n.

From (1), ρr,n(x) involves both a bit-reversal mapping

and a linear congruential sequence mapping. In [10], the

problem was solved for the bit-reversal mapping and corre-

sponding architectures were developed. In the following, we

consider the linear congruential sequence mappings, and then

combine the results to determine φr,n(x, L).
Let s(·) be a linear congruential sequence defined as

s(c, m, x) = c · (x + 1) mod m, 0 ≤ x < m, (3)

and let T (c, m, α, β) be the number of integers between 0

and some α whose image under (3) is between 0 and some β,

where α ≥ 0, β ≥ 0. Using the direct approach of counting

the number of such integers as we step through the sequence

values in (3) by comparing s(c, m, x) to α for all 0 ≤ x ≤ α
has time complexity proportional to x. In [8], it was shown

that the number of such integers is given by [8]

T (c, m, α, β) =
{⌊

α
m

⌋
β + S(c, m, α mod m, β), if β < m;

α, otherwise.

(4)

where

S(c, m, α, β) =
αβ

m2
+ D(c, m, c + αc − β, c + αc, c, c − β) + E.

(5)

and E is a constant. The function D(·) can be evaluated iter-

atively in t iterations using integer arithmetic as:

D(h, k, c1, c2, c3, c4) =
t∑

j=1

4∑
i=1

(−1)i+j+2×
(

bi[j](ci[j] + ci[j + 1])p[j − 1]
2h[1]

− bi[j]
2

− e(h[j + 1], ci[j])
4

)
.

(6)

602

where c1 = c+αc−β, c2 = c+αc, c3 = c, c4 = c−β, and

a[j] =
⌊

h[j]
h[j + 1]

⌋
, h[j + 2] = h[j] mod h[j + 1],

bi[j] =
⌊

ci[j]
h[j + 1]

⌋
, ci[j + 1] = ci[j] mod h[j + 1],

p[j] = a[j]p[j − 1] + p[j − 2], (7)

for i = 1, · · · , 4, j = 1, · · · , t, with initial conditions h[1] =
k, h[2] = h, ci[1] = ci, i = 1, · · · , 4, p[0] = 1 and p[1] =
a[1]. The function e(h, c) is defined to be 1 if c �= 0 or c mod
h = 0, and 0 otherwise.

Next, let σr,n(α, β) be the number of integers x between

0 and α − 1 (inclusive) such that ρr,n(x) ≥ β, where α ≥ 0,

β ≥ 0. Then σr,n(α, β) is given by:

σr,n(α, β) = σ′
r,n(α, β) + σ′′

r,n(α, β) (8)

where

σ′
r,n(α, β) =

⌊
α − 1

2r

⌋
×

(
2r −

⌊
β

2n

⌋
− 1

)
+

φr

(
(α − 1) mod 2r,

⌊
β

2n

⌋
+ 1

)
, (9)

σ′′
r,n(α, β) = α′′ − T (c, 2n, α′′, β′′),

c = LUT
(

πr

(⌊
β

2n

⌋)
, n

)
, (10)

α′′ =
⌊

α − 1
2r

⌋
+

{
1, if πr

(⌊
β
2n

⌋)
≤ (α − 1) mod 2r;

0, otherwise.

β′′ = β mod 2n + 1.

In (9), φr is the number of addresses that are pruned by the

bit-reversal map πr [10].

3. PARALLEL INTERLEAVING ALGORITHM

To determine where an integer x gets mapped by ρr,n(x) in

the presence of pruning for an interleaver of length L, we

first determine the number of pruned addresses in the interval

from 0 to x using (8) as σr,n(x + 1, L). Then, the interval is

expanded to x+σr,n(x+1, L) in order to include these pruned

addresses, and the number of pruned addresses in the interval

from 0 to x + σr,n(x + 1, L) is determined. The process is

repeated until a minimum sized interval that includes exactly

x valid addresses, is reached.

Let σ
(k)
r,n(x + 1, L) be the number of addresses pruned at

the kth iteration. Then the number of pruned addresses at

iteration (k + 1) is given by

σ(k+1)
r,n (x + 1, L) ← σr,n

(
x + σ(k)

r,n(x + 1, L) + 1, L
)

. (11)

Algorithm 1 φ-Algorithm

procedure φ-ALGORITHM(n,L, x)

k ← 0
σ0

r,n(x+ 1, L)← 0
repeat

σk+1
r,n (x+ 1, L)← σr,n

(
x+ σk

r,n(x+ 1, L) + 1, L
)

k ← k + 1

until
(
σk+1

r,n (x+ 1, L) = σk
r,n(x+ 1, L)

)
φr,n(x, L)← σk

r,n(x+ 1, L)
ψr,n(x, L)← πn (x+ φr,n(x+ 1, L))

end procedure

The process is repeated until σ
(k+1)
r,n (x + 1, L) = σ

(k)
r,n(x +

1, L). The pseudo-code of the φ-algorithm for computing

φr,n(x, L) as defined in (2) is outlined in Algorithm 1.

The φ-algorithm for the map ρr,n(x, L) converges in at

most log(L) − 1 iterations based on the observation that two

consecutive addresses generated by ρr,n(x) in (1) can not

both be invalid due to the bit-reversal map on the r LSBs.

Moreover, each iteration of the φ-algorithm involves com-

puting σr,n(x, L) according to (8), which requires at most

log(L) − min(r, n) steps to converge [8]. Hence the time

complexity of the φ-algorithm is O(log2(L)). For the choice

of L between 27 and 214 as defined in UMB [1], it can be

shown through simulations that the algorithm converges in at

most 45 iterations.

4. HARDWARE ARCHITECTURES

Fig. 4 shows the architecture for computing T (c, m, α, β)
in (5) iteratively. The architecture uses basic integer adders,

subtractors, unsigned multipliers, and unsigned integer di-

viders building blocks. The dividers generate the quotient as

well as the remainder (modulo), and have comparable com-

plexity to an unsigned array multiplier. The look-up table

stores the values of the constant E in (5) [8]. Intermedi-

ate registers that store results between iterations are shown

highlighted in the figure.

Fig. 5a shows the architecture for computing σ′
r,n(α, β)

in (9), where the φ-block implements the φ-algorithm for the

bit-reversal map πr [10]. The blocks in the figure designated

by � and � perform logical right and left shifting respec-

tively, while the “LSB” block in the figure passes the least-

significant bits as indicated by the top input to these blocks.

Fig. 5b shows the architecture for computing σ′′
r,n(α, β)

in (10) using the T -block shown in Fig. 4 to compute

T (c, 2n, α′′, β′′). The “BREV” block in the figure reverses

the order of the bits of its input (physically just using wires

without any logic). The logic to the left of the T -block

in Fig. 5b generates the appropriate inputs to the T -block

according to (10).

Both the σ′ and the σ′′ blocks are combined in Fig. 6 ac-

cording to (8) to compute φr,n(α, β) iteratively using the φ-

algorithm. The iterations performed by (11) over σr,n(α, β)

603

k

h

a

h b1

r1
c1

/

%

r2
c2 /

%

b2

�

b3

r3c3

/

%

r4
c4 /

%

b4

�

�

%

/
K

H

p

p

%C1

h%
C2

h

h

%
C3

%
C4

B

A

s+

±1

e(h,c1)
e(h,c2)
e(h,c3)
e(h,c4)

�

�
T

A/2

T/4

2K

D

m
c

c

c

c

c

m2

LUT

c

m

E

m
c

T

s±

±

b1
b2

b3
b4

� ��
�
 ���� ccccccmcD ,,,,,

m

m��

1
0

�

 c

�

�

�

��c

�
 �� cc

cc
�

��c
�

Figure 4: Architecture for computing T (c, m, α, β) in (4).

-1 r

>>

n

>>

<<
n

1

�

LSB

r

r
� ��
� ,,nr�

r

�

r	

(a)

c

2n

T-1 r

n

LUT
n

LSB

r

>>

>>

0
1

1n

�

<<1

�
�
��

�
� ���� �
 ,,2, ncT

� ��
� ,,nr��

LSB

BREV

�

�

 ��

� ��

 ��

(b)

Figure 5: Architectures for computing (a) σ′
r,n(α, β), and (b)

σ′′
r,n(α, β).

to generate φr,n(x, L) are done using the feedback connection

shown in Fig. 6. As shown in the figures, the architectures

employ basic arithmetic circuits that can be implemented ef-

ficiently in hardware.
Referring to the parallel lookahead interleaving scheme

in Fig. 2, if the φ-blocks implement the φ-algorithm shown in

Fig. 6 for the interleaver map ρr,n, then the lookahead inter-

leaver would correspond to a parallel UMB turbo interleaver.

r n

x+1

� �Lxnr ,,	

L

� �Lxk
nr ,1)(

, ��

nr,� �

nr,� ��

Figure 6: Architecture for computing φr,n(α, β) iteratively.

5. REFERENCES

[1] 3rd Generation Partnership Project 2 (3GPP2), Physical layer for Ultra
Mobile Broadband (UMB) air interface specification, 2007.

[2] M. M. Mansour, “Parallel channel interleavers for 3GPP2/UMB,” in

IEEE Workshop on Sig. Proc. Sys. (submitted for review), Oct 2008.

[3] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit

error-correcting coding and decoding: Turbo codes,” in IEEE Int. Conf.
on Communications, Geneva, Switzerland, 1993, pp. 1064–1070.

[4] F. Daneshgaran and P. Mulassano, “Interleaver pruning for construction

of variable-length turbo codes,” IEEE Trans. on Inf. Theory, vol. 50,

pp. 455–467, Mar 2004.

[5] M. Eroz and A. R. Hammongs Jr., “On the design of prunable inter-

leavers for turbo codes,” in IEEE Vehicular Technology Conference,

May 1999, vol. 2, pp. 1669–1673.

[6] L. Dinoi and S. Benedetto, “Design of fast-prunable s-random inter-

leavers,” IEEE Trans. on Wireless Comm., pp. 2540–2548, Sep 2005.

[7] L. Dinoi and S. Benedetto, “Variable-size interleaver design for parallel

turbo decoder architectures,” IEEE Trans. on Comm., vol. 53, no. 11,

pp. 1833–1840, Nov 2005.

[8] M. M. Mansour, “Parallel lookahead algorithms for pruned inter-

leavers,” submitted to IEEE Trans. on Communications, Dec 2007.

[9] F. Ling and D. N. Rowitch, “Turbo code interleaver using linear con-

gruential sequence,” Oct 2001, U.S. Patent 6304991.

[10] M. M. Mansour, “A parallel pruned bit-reversal interleaver,” To appear
in IEEE Trans. on VLSI Systems.

604

