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ABSTRACT

In this paper, we describe a processor architecture tailored for radix-
4 and mixed-radix FFT algorithms, which have lower arithmetic
complexity than radix-2 algorithms. The processor is based on trans-
port triggered architecture and several optimizations have been used
to improve the energy-efficiency. The processor has been synthe-
sized on a 130nm standard cell technology and analysis show that a
programmable solution can possess energy-efficiency comparable to
a fixed-function ASIC.

Index Terms— Discrete Fourier transforms, Application spe-
cific integrated circuits, Digital signal processors, Parallel architec-
tures

1. INTRODUCTION

Recently fast Fourier transform (FFT) has gained popularity as
OFDM has been used in several wireless and wireline communi-
cation systems, e.g., IEEE 802.11a/g, 802.16, VDSL, and DVB.
FFT implementations are often based on Cooley-Tukey radix-2
FFT algorithms due to the regularity and principal simplicity of the
computations. However, arithmetic complexity can be reduced by
exploiting radix-4 FFT algorithms but these algorithms can only
support power-of-four sequence lengths. A solution supporting
power-of-two lengths with lower complexity than radix-2 is mixed-
radix FFT where radix-4 and radix-2 computations can be combined.

Traditionally FFT has been realized as fixed-function VLSI
implementation since it provides better energy-efficiency and per-
formance than software implementations. Such implementations
have recently been reported, e.g., in [1, 2], implementations based
on radix-2 FFT are reported and examples of radix-4 FFTs can be
found, e.g., from [3, 4]. Implementations based on mixed-radix
algorithms are reported in [5, 6].

Recently, software implementations have become preferable due
to the flexibility but the energy-efficiency of programmable archi-
tectures has been poor compared to dedicated hardware structures.
However, the energy-efficiency can be improved by customizing the
architecture towards to the application domain.

In this paper, we describe a processor architecture tailored for
FFT computations. Several optimizations have been used to improve
the energy-efficiency of the processor. This paper combines results
from our previous papers [7, 8] and shows that a programmable so-
lution can possess energy-efficiency comparable to fixed-function
ASIC. The processor is tailored for radix-4 and mixed-radix FFT
algorithms and supports several transform lengths.

This work has been supported in part by the Academy of Finland under
project 205743 and the Finnish Funding Agency for Technology and Innova-
tion under research funding decision 40163/07.

2. FFT ALGORITHMS

In this paper, we have used the in-place decimation-in-time (DIT)
radix-4 FFT algorithm with in-order-input, permuted output as
given, e.g., in [9] and corresponding mixed-radix algorithm. The
radix-4 algorithm can be formulated as follows:

F22n = R4n

[
0

∏
s=n−1

(I4s ⊗F4⊗ I4n−s−1)(T4s+1,4n ⊗ I4n−s−1)

]
; (1)

F4 =

⎛
⎜⎝

1 1 1 1
1 − j −1 j
1 −1 1 −1
1 j −1 − j

⎞
⎟⎠ ; (2)

R4n =
0

∏
k=n−2

I4k ⊗P4(n−k),4 (3)

where ⊗ denotes tensor product, IN is identity matrix of order N,
and RN is a permutation matrix based on stride-by-S permutation
matrix of order N, PN,S, defined as [10]

[
PN,S

]
mn =

{
1, iff n = (mS mod N)+ �mS/N�
0, otherwise

,

m,n = 0,1, . . . ,N−1 . (4)

The matrix Tk,N contains twiddle factors W m
N = e j2πm/N as follows

Tk,N = diag
(

ω(0)0,ω(0)1,ω(0)2,ω(0)3,

ω(1)0,ω(1)1,ω(1)2,ω(1)3, . . . ,

ω(k/4−1)2,ω(k/4−1)3
)

; (5)

ω = RN/4(W
0
N ,W 1

N , . . . ,W (N/4−1)
N )T (6)

An example of signal flow graph of this algorithm is depicted in
Fig. 1a). Power-of-two FFT can be supported by using mixed-radix
algorithm consisting of radix-4 and radix-2 computations as follows

F22n+1 = S2(2n+1) (I4n ⊗F2)U2(2n+1) ·[
0

∏
s=n−1

(I4s ⊗F4⊗ I22n−2s−1)
(
T4s+1,4n ⊗ I22n−2s−1

)]
; (7)

F2 =
(

1 1
1 −1

)
; (8)

S22n+1 = (I2⊗R4n)P22n+1,2 (9)

where twiddle factors for the last radix-2 processing column are de-
fined as

UN = ST
N

(
IN/2⊕diag

(
W 0

N ,W 1
N , . . . ,W N/2−1

N

))
(10)
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Fig. 1. Signal flow graph of a) 16-point radix-4 FFT and b) 32-point
mixed-radix FFT. A constant k in the signal flow graph represents a
twiddle factor W k

32.

where⊕ denotes matrix direct sum. An example of signal flow graph
of the mixed-radix algorithm based on radix-4 and radix-2 computa-
tions is shown in Fig. 1b).

3. PROCESSOR ORGANIZATION

The proposed processor is based on transport triggered architecture
(TTA) [11] , which a class of statically programmed instruction-level
parallelism (ILP) architectures reminding very long instruction word
(VLIW) architectures. In TTA programming model, the program
specifies only the data transfers in the interconnection network and
actual operations occur as “side-effect” of data transports. Operands
to a function unit are input through ports and one of the ports acts
as a trigger. Whenever data is moved to the trigger port, function
unit initiates operation execution. When the input ports are regis-
tered, the operands for the operation can be stored into the registers
in earlier instruction cycles and a transport to the trigger port starts
the operation with the operands stored into the registers. Thus the
operands can be shared between different operations of a function
unit, which reduces the data traffic in the interconnection and the
need for temporary storage in register file or data memory.

A TTA processor consists of a set of function units and regis-
ter files containing general-purpose registers. These structures are
connected to an interconnection network, which connects the input
and output ports of the resources. The architecture can be tailored by
adding or removing resources. Moreover, special function units with
user-defined functionality can be easily included. Such units are the
key to energy-efficient implementations; customization of the func-
tion units according to the specific characteristics of the application
is effective means to reduce power consumption without reducing
the performance. Such units also reduce the instruction overhead,
thus they reduce the power consumption due to instruction fetch. In
this work, we have used several custom-designed units tailored for
FFT application.

A processor customized for FFT should support complex data
type and here we simply spit the native word into two parts represent-
ing real and imaginary part of complex number. We also introduced
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-/+

j

j
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T

Fig. 2. Block diagram of complex adder unit.

complex-valued multiplication and addition units. The complex-
valued adder unit computes any of the four-operand addition defined
in 4-point DFT, F4, in (2) and the structure is shown in Fig. 2. In this
unit, the operation code is used as the trigger port, thus once the four
operands (summands) are transferred to input ports, four results can
be triggered by transferring the opcode to trigger code without the
need to transfer the operands.

In order to save memory storage, in-place computations are
used, i.e., results from butterfly computations are stored to memory
locations where the operands were read. This implies that for N-
point FFT only N-memory locations are used. FFT computations
contain also special access patterns and computing the addresses
for memory accesses with traditional instruction set would take
several instructions. Significant savings in power consumption can
be obtained by using special address generation units. The address
generation in FFTs can be simplified by investigating the access pat-
terns at bit-level and results in simple rotations. We have described
the address generation units for the FFT processor earlier in [7].

High performance FFT implementation requires parallel mem-
ory accesses. We have avoided the multi-port memories due to their
high power consumption and used parallel single-port memories in-
stead. Parallel memory organization requires that the operands to
be accessed in parallel are distributed to different memory modules,
which requires suitable conflict-free access scheme to be used in the
parallel memory control logic. In this work, we have used the simple
parity scheme proposed in [12].

Another memory related issue in FFTs is the twiddle factor stor-
age. Here we have designed a special unit, which computes the twid-
dle factors based on complex-valued coefficients stored in a lookup
table. Several methods have been proposed to minimize the lookup
tables for generating twiddle factors but mainly for radix-2 algo-
rithms. We have developed a method for minimizing the coefficient
tables for radix-4 FFT such that also mixed-radix algorithms are sup-
ported and such a twiddle factor unit is described in detail in [8]. For
N-point FFT, we need to store N/8+1 complex-valued coefficients
in a table and four real-valued adders and some control logic are
needed to produce the twiddle factors. The units can generate twid-
dle factors for various transform sizes and the maximum supported
FFT size depends on the size of the lookup table.

The organization of the proposed transport triggered architecture
processor tailored for FFT computations is depicted in Fig. 3. The
instruction unit (iu) fetches and decodes the instructions from the in-
struction memory and generates control signals. The immediate unit
is used for extracting immediate data from instructions. The inter-
connection network consists of one Boolean-valued bus mainly for
transporting results from comparison unit to be used with conditional
execution and 17 32-bit buses. The network is optimized (not fully
connected) and several of the buses are point-to-point connections.

In general, software implementations of FFT contain three
nested loops and separate iteration counters are maintained for but-
terfly index and butterfly column index. Here separate counters
are not needed since the twiddle factor generator and address gen-
eration units can determine sufficient information from a single
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ld/st tfgld/st caddcmulag add shift cmp immiulu

17 32-bit buses, one 1-bit bus

RF1 RF2 RF3 RF4 RF5 RF6 RF7 RF8 RF9 RF10 RF11RFb

Imemmux&ctrl

Dmem Dmem

Fig. 3. Block diagram of FFT processor. Dmem: data memory.
Imem: instruction memory. ld/st: load-store unit. tfg: twiddle factor
unit. ag: address generator. cmul: complex multiplier. cadd: com-
plex adder. add: adder. lu: logical unit. shift: shifter. cmp: compare
unit. iu: Instruction unit. imm: immediate unit. RF: register file.
RFb: Boolean register file.

iteration counter and transform size register. This results in a single
iteration loop implementation as illustrated in the pseudo code in
Fig. 4. In addition, the implementation exploits software pipelining
and instruction level parallelism. During the kernel execution, one
operand read and result write are performed at each cycle, thus the
memory bandwidth of the 2-port parallel memory is fully used. The
efficiency of the implementation can be considered by noting that
theoretical lower bound for 1024-point radix-4 FFT when using a
dual-port memory is 5121 memory cycles, i.e., 1024log4(1024)+1
parallel reads and writes to dual-port memory. In the proposed pro-
cessor with two parallel memory modules as illustrated in Fig. 3,
1024-point FFT requires 5160 cycles. This shows that the software
overheads are minimal.

The power consumption due to long instructions is reduced by
exploiting dictionary-based code compression [13]. All the unique
instructions are stored to a dictionary and replaced with indices
pointing to the dictionary. During execution, the code word fetched
from the program memory is used to read the original instruction
from the dictionary for decoding. The actual dictionary is imple-
mented using standard cells.

4. EXPERIMENTS

We have described processor in VHDL language such that the twid-
dle factor generator unit supports power-of-two FFTs up to 16K, i.e.,
the lookup table in the twiddle factor unit contains 2049 complex-
valued coefficients. The unit has two pipeline stages and the look up
table was implemented as hardwired logic. The native word in the
processor is 32 bits, which allows complex-valued data to be repre-
sented with 16-bit real part and 16-bit imaginary part. Clock gating
was applied to reduce the power consumption of non active function
units. This provides savings on units with low utilization.

The design has been synthesized with Synopsys tools onto a 130
nm standard cell technology. Estimates for power consumption are
obtained with Synopsys tools with the aid of gate level simulations.
The characteristics of the results are listed in Table 1. The twiddle
factor unit uses about 23% of the core area and 7% of the power
consumption, thus twiddle factor unit improves the energy-efficiency
of FFT computations. The most significant power savings compared
to our previous results from [7] are due to data memories as here we
have exploited two parallel single-port memories instead of dual-port
memories which halved the memory power consumption.

The energy-efficiency of FFT implementations is often com-

main() {
initialization(); /* 8 to 42 instructions */
prologue(); /* 14 instr. */
for(idx=0; idx < (N�log4N�)/16-1; idx++)

kernel(); /* 16 instr. */
epilogue; /* 17 instr. */

}

Fig. 4. Pseudo code illustrating structure and control flow of the
program code.

pared by measuring how many 1024-point FFTs can be computed
with energy of 1 mJ, thus we selected some examples from the
literature representing FFTs with different implementation tech-
nologies. The comparison results are listed in Table 2. The Intel
Pentium-4 [14] represents a general-purpose RISC while StrongArm
SA-1100 [15] can be considered as a general-purpose processor for
mobile devices as it employs custom circuits, clock gating, and
reduced supply voltage. Representatives of general-purpose DSP
processors are TI TMS320C6416, which is a VLIW machine, and
Imagine [16] designed for media applications. Both the processors
utilize pseudo-custom data path tiling. In addition, pass-gate mul-
tiplexer circuits are exploited in C6416. FFT implementations on
C6416 are reported in [17]. It should be noted that cycle count of
6002 is obtained with eight memory ports while the proposed pro-
cessor uses only two. Spiffee processor [18] is tailored for FFT and
power consumption is reduced by using low supply voltages. In [19],
an FPGA solution with dedicated embedded FFT logic is reported.
In [2], a custom scalable IP core is reported, which employs sin-
gle memory architecture with clock gating, while in [20] a custom
variable-length FFT-processor employing radix-2/4/8 single-path
delay algorithm is described. Highly optimized VLSI implemen-
tation of FFT using subthreshold circuit techniques is described
in [21]. The comparison in Table 2 shows that the energy- efficiency
of the proposed processor is in the level of fixed-function ASIC
implementations although the implementation is programmable.

Table 1. Characteristics of the proposed processor synthesized on
130nm ASIC technology.

supported FFT sizes 64 – 16384
cycle count 207 – 114722

execution time 828ns – 459μs @ 250MHz
power consumption 60 – 73mW @ 1.5V, 250MHz

max. clock freq. 255 MHz

Area [kgates]
Core 38
Imem 2
Dmem 240
Total 280

1024-point FFT
cycle count 5160

power consumption 60.4mW @ 1.5V, 250MHz
29.8mW @ 1.1V, 140MHz

8192-point FFT
cycle count 57396

power consumption 68.7mW @ 1.5V, 250MHz

595



Table 2. Energy-efficiency comparison. VCC: supply voltage. tclk:
clock frequency. tFFT: FFT execution time.

Design Tech. VCC tclk tFFT FFT/mJ
[nm] [V] [MHz] [μs]

1024-point FFT
proposed 130 1.5 250 21 809

130 1.1 140 37 910
[19] 130 1.3 100 13 149

130 1.3 275 5 241
[17] 130 1.2 720 8 100

130 1.2 300 22 250
[14] 130 1.2 3000 24 1
[16] 150 1.5 232 160 16
[21] 180 0.9 6 430 1428

180 0.35 0.01 250000 6452
[2] 180 – 20 282 43
[20] 350 3.3 45 23 93

350 2.3 18 57 133
[15] 350 2.0 74 426 60
[18] 600 3.3 173 105 39

600 1.1 16 330 319

8192-point FFT
proposed 130 1.5 250 230 63

[22] 180 1.8 20 717 55
[1] 180 – 22 908 35
[5] 250 – 12 1198 4

5. CONCLUSIONS

In this paper, a low-power application-specific processor tailored for
FFT computation was proposed where several methods for reducing
the power consumption were utilized: special function units, paral-
lel memories, clock gating, and code compression. The processor
was synthesized on a 130 nm ASIC technology and power analysis
showed that the proposed processor has both high energy-efficiency
without significant reduction on performance. The performance can
even be improved by adding computational resources.
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