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ABSTRACT 

Discrete Wavelet Transform (DWT) is increasingly 
recognized in image/video compression standards, as 
indicated by its use in JPEG2000. The lifting scheme 
algorithm is an alternative DWT implementation that has a 
lower computational complexity. In this paper, a new high 
performance lifting-based architecture is presented for the 
9/7 DWT engine. The proposed architecture has a balanced 
pipeline and improves both the computational error and 
hardware complexity for any given working frequency. In 
the proposed architecture, the constant coefficients are 
modified by introducing new variables to the conventional 
lifting structure to minimize hardware cost and 
computational error, imposed by quantization of 
coefficients. Simulation results indicate a quality 
improvement of up to 15 dB when compared to an 
architecture using the standard coefficients that has the same 
hardware cost and working frequency. Similarly, the 
hardware cost is reduced by about 20% when both 
architectures deliver the same PSNR when operating at the 
same frequency. 
 
Index Terms— Discrete wavelet transform, Constant 
multiplier, Lifting-based architecture, Balanced pipeline 
 

1. INTRODUCTION

The rapid growth of visual media in many applications has 
led to a variety of image and video compression standards. 
Wavelet transform is a domain transform that separates high 
and low frequency characteristics of an image to further 
improve the coding efficiency. The Discrete Wavelet 
Transform (DWT) has become a popular domain transform 
in signal and image processing. Convolution is the 
conventional method to implement DWT, while the lifting 
scheme, initially proposed in  [1], is more efficient DWT 
implementation method. The lower computational 
complexity and reduced memory requirements of lifting-
based DWT have made it the best choice for hardware 
implementations. 
While several convolution-based architectures are 
introduced in  [2], most DWT architectures are based on the 
lifting scheme  [3], including one-dimensional (1-D) and two 

dimensional (2-D) implementations  [4]. For 1-D DWT,  [5] 
has mapped the lifting structure directly into a pipelined 
architecture, but according to  [6] by folding the last two 
pipeline stages, full hardware utilization is achieved.  [7] and 
 [8] provide optimized architectures that can be used in a 
wide range of different filters. On the other hand, in order to 
optimize the lifting-based critical path (DWT engine), a 
flipping architecture  [9] has been introduced, in which the 
critical path and memory requirements are reduced by 
scaling the constant coefficients.  [10],  [11] and  [12] have 
also focused on the efficient quantization of constant 
multipliers and their effects on the performance.  
Although many studies have been performed on the lifting 
structure, only few of them have focused on either 
optimizing the computation engine on the basis of 
modifying the constant coefficients  [9], or the effect of 
quantizing them  [10],  [11], and  [12]. In the pipeline 
architectures proposed in  [5] and  [6] the working frequency 
has been improved by reducing the critical path in the 
slowest stage. Although, hardware cost and computational 
error of 9/7 DWT has been optimized in  [14], the pipeline 
depth has not been considered to obtain a balanced 
architecture. 
The computation engine of the lifting scheme of 9/7 DWT 
consists of a number of large constant multipliers, whose 
hardware implementation is area and power consuming. In 
this paper, a split structure is proposed which offers a 
flexible method for designing a balanced-pipeline 
architecture with optimized cost-error performance for the 
computation engine of the lifting method. In the proposed 
technique the value of the original transform coefficients 
have been modified to achieve an optimized hardware cost 
and transform error, while the architecture remains balanced 
with regards to the pipeline depth. The suitable coefficients 
for each working frequency can then be determined 
according to the hardware cost or quality requirements of 
each application. 
The paper is organized as follows: In section 2, 1-D lifting-
based 9/7 DWT structure and constant multiplier issues are 
introduced. In section 3, the proposed split structure and the 
corresponding optimization procedure are presented. The 
achieved performance and efficient coefficients are 
demonstrated in section 4, followed by conclusions. 
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2. BACKGROUND 

In this section, first we introduce the fundamental concepts 
of the lifting-based wavelet. Next, Canonical Signed Digit 
(CSD) as a representation which offers the lowest hardware 
cost for constant multipliers is introduced. Finally, we 
explain the important issues on constant multipliers as the 
most important building block of the lifting-based wavelet. 
2.1. Lifting Structure of 1-D 9/7 DWT  
The 2-D DWT operation consists of two 1-D wavelet 
transforms that are being applied consecutively in the 
vertical and horizontal directions. Outputs of this module, 
Yis, are calculated according to equation (1) in six steps, 
where Xis are inputs of the engine and P, Q, R and S are 
internal nodes. 
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The main path of the structure for lifting-based 1-D 
transform consists of five constant multipliers, which is 
partitioned to five pipeline stages as shown in Figure 1-(a). 
As each stage includes one multiplication by a constant 
coefficient and one addition, the working frequency of the 
pipeline architecture is determined by the slowest constant 
multiplier. Hence it is important to balance constant 
multipliers, in addition to reducing the overall area and 
computational error. 
2.2. Constant Multiplier: Cost, Error and Delay 
Constant multiplier is the most important and area- 
consuming module of 9/7 lifting structure. Array multiplier 
as the primary architecture of multipliers consists of a 
number of row of adders. We simply define the hardware 
cost as the number of adders. In order to minimize the 
defined cost, CSD as the representation with the minimum 
number of ‘1’ bits for every single constant multiplier has 
been proposed in  [13]. As a result, the exact hardware cost 
is modeled by (2), where const_mult_ones is the number of 
‘1’ bits in the CSD representation. Another characteristic of 
constant multiplier is the error that exists due to the 
quantization of real numbers in the implementation. The 
mean square error of outputs is defined as (3), where z and 
z’ are the ideal and the real outputs, respectively. 
Delay is another characteristic of a constant multiplier. 
Delay determines the working frequency and is related to 
the effective bit width (EBW) of the constant coefficient, 
which is equal to the number of bits starting from the first 
leftmost '1' bit to the rightmost '1' bit. If two constant 
coefficients have equal effective bit width, they are 
balanced; E.g. two numbers a=0.011011000100, and 
b=110000.101000 are balanced with the effective bit width 
of eight.  
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Figure 1. The main calculation path of 1 D lifting-based structure: 
(a) Standards structure. (b) Proposed structure 

3. THE PROPOSED METHOD 

In this section, the proposed method that intends to optimize 
the hardware cost and error of lifting structure in 1-D 9/7 
DWT is presented. In the first subsections the main idea to 
modify the constant multiplicands of the 1-D structure, in 
order to achieve a balanced architecture with lower overall 
hardware cost and computational error is introduced. Later 
the corresponding optimization procedure is explained. 
3.1. Split Structure: The Main Idea 
In the 1-D lifting-based structure of 9/7 DWT, the 
coefficient of each constant multiplier is a real number. 
These coefficients should be quantized for hardware 
implementation, hence the outputs would never be precise. 
On the other hand the results are calculated in a series of 
addition and multiplication of inputs and coefficients. 
Considering the above issues, we propose to change these 
internal coefficients in order to reach better values offering 
lower cost and lower computational error. In other words, 
each coefficient is changed with respect to other coefficients 
such that the final output remains unchanged. Figure 1-(b) 
demonstrates the proposed change. This change results in 
new coefficients with the definition of equation (4), where 
Tn(value) is the truncation of value by n bits; The truncation 
value n is equal for all coefficients in order to have a 
balanced-pipeline architecture. 
 

3.2. Split Structure: Cost and Error 
The hardware cost of the Split structure is the sum of 
hardware costs of all constant multipliers. But computing 
error is more complicated. The exact value of error can be 
estimated using the equation in (5). For more details and 
definition of EH and EL, please refer to  [14]. 
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3.3. Optimization Process 
The optimization process, Figure 2, is used to determine the 
optimum coefficients in design step. We have to use the 
same effective bit width for constant multipliers to balance 
the pipeline stages. On the other hand a trade-off exists 
between error and cost of these constant multipliers.  
In order to optimize the standard structure (Figure 1-(a)) for 
a given frequency, first the delay of the critical path should 
be determined; which is proportional to the effective bit 
width of each constant multiplier. Therefore, constant 
multipliers are chosen with the same effective bit width as 
they have the same delay and working frequency. Then the 
corresponding hardware cost and computational error is 
calculated. Using this process, for any given working 
frequency, there is only one optimum point in standard 
structure.  
Similarly for the proposed architecture (Figure 1-(b)), the 
effective bit width of the constant coefficients should be 
chosen based on the given working frequency. But in this 
case the values of constants are chosen in the optimization 
process. Therefore the proposed architecture results in a set 
of solutions, offering different hardware cost and error for 
each working frequency. Consequently, depending on the 
frequency, cost, and error requirements of each application, 
we can choose the corresponding suitable coefficient set. 
The optimization process is presented in Figure 2. 
 

Optimize (n: effective bit width){ 
 For all m1 values (OBN precision) 
  For all m2 values (OBN precision) 
   For all m3 values (OBN precision) 
    For all m4 values (OBN precision) 
      calculate all ten coefficients (4): 
       n1,n2,n3,n4,�’,�’,�’,�’,K’,(k-1)’ 
      Calc cost-error //(2), (5)  
      Add to list if qualified 
} 

Figure 2. The pseudo code of optimization process 

4. SIMULATION RESULTS 

Simulations were performed to evaluate the proposed 
method. The bit width of input data and internal nodes are 
not important in our model in (2). The constant coefficients 
of 9/7 lifting structure are considered as positive values with 
high precision as presented in Table 2.  
Initially the performance of the standard structure for each 
specific frequency is determined. The effect of quantizing 
the original coefficients on cost and error of the lifting 
structure of 1-D 9/7 DWT can be found by choosing m1 to 
m4 variables equal to ‘1’ in optimization procedure of 
Figure 2. Next, we derived a set of optimum results for the 
proposed structure using the modified coefficients. For this 
simulation, 10, 8, and 5 bits are reserved for m1 to m4 
variables as optimization bit number (OBN) and are 
changed from 0.5 to 1.0. The simulation with OBN=10 is 
more accurate and finds better results, while it takes about 
one week for each pipeline depth on a Pentium-IV 3.00GHz 
with 1.0GB of RAM. On the other hand the simulation with 

OBN=8 is less accurate with a faster execution time of 40 
minutes on the same PC. 
Both simulations are executed for various working 
frequencies by choosing the effective bit width of multiplier 
from 4 to 20. In order to calculate the improvement 
achieved by the proposed method, the results of these two 
simulations are compared in Figure 3 for pipeline depths of 
11 and 12. In these figures, the horizontal axis represents the 
hardware cost which is the total number of ‘1’ bits of 
coefficients. The vertical axis demonstrates the 
corresponding PSNR quality in dB, calculated from (5), 
STD and OBN=i represent the diagrams offered for standard 
and proposed architectures with effective bit width of i, 
respectively.  
The diagrams show that the STD diagram offers only one 
point for each pipeline depth with a particular cost and error, 
while the proposed method results in a set of points for any 
pipeline depth. For example, in Figure 3, OBN=10 offers 11 
choices with different cost and error. Furthermore, the 
proposed method improves the quality by 14 dB in average, 
without increasing the hardware cost (=20). Similarly, the 
hardware cost is reduced from 20 to 16 where the PSNR of 
both methods is 42 dB. A similar performance is for other 
values of pipeline depth. The PSNR improvements are not 
significant for OBN=5 in Figure 3, because only five bits is 
used for m1 to m4. It is inferred that higher performance can 
be achieved using a heavier simulation with higher 
optimization bit number (OBN). 
As an example, three points of optimization process are 
presented in Figure 3 for pipeline depth=11 and 
optimization bit number=8 for m1 to m4. The middle column 
(STD) represents the original coefficients, which is also 
shown in Figure 3-(a) as STD. Left and right columns 
belong to the proposed structure, having the same hardware 
cost and quality with the standard result, respectively. These 
two points are shown in Figure 3-(a) on OBN=8 curve by 
white solid squares. Decimal values of constant multipliers 
and their corresponding binary representations are shown. 
Although coefficients are presented in binary format, their 
CSD representations are used for hardware cost calculation. 
Also, hardware costs are shown inside ( ).   
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Figure 3. Comparison of cost-quality diagram of proposed and 

standard structures (Pipeline depth=EBW=11) 
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According to this table, despite the equal cost of 20, offered 
in the left column, the proposed method has improved the 
quality by about 10 dB. When compared to the right 
column, it shows that in addition to 1.3 dB improvement in 
quality, the hardware cost is reduced by about 15%. 

5. CONCLUSION 

This paper addresses the trade-off between hardware cost, 
and computational error of a 1-D lifting-based 9/7 DWT 
engine in a balanced-pipeline architecture. In order to 
improve the performance of the lifting structure, a split 
architecture, in which the constant coefficients were 
changed to gain cost-error improvement, has been proposed. 
As a result, four new parameters have been added and the 
other six coefficients have been modified. The values of all 
ten coefficients were chosen carefully for different working 
frequencies using an optimization process. Simulation 
results show that the proposed method improves 
computational quality up to 15 dB when compared to the 
standard architecture, having the same hardware cost and 
working frequency. Similarly, the hardware cost is reduced 
by about 20% when both architectures deliver the same 
PSNR and working frequency. This method also offers a set 
of choices with different hardware cost and PSNR that can 
be selected according to the area constraint and the 
requirement of the application. 

Table 1. Examples for comparison of the proposed and standard 
methods for, same cost and same PSNR (effective bit width = 11, 

optimization bit number = 8) 

 Proposed 
(Same cost) 

Standard 
(STD) 

Proposed 
(Same PSNR) 

Cost 20 20 17 
PSNR 52.49 42.46 43.7 
m1 0.5 -- 0.5703125 
m2 0.5 -- 0.5 
m3 0.56640625 -- 0.5703125 
m4 0.62109375 -- 0.8125 

� 11001011 (4) 11001011 (4) 111001111 (3) 

�×10 11011001 (4) 11011001 (4) 1011111001 (3)

� 1 (0) 1110001 (2) 10000000111(2)

� 11111001 (2) 11100011 (3) 1010000111 (3)

k 10001011 (3) 10011101011 (5) 1000101 (2) 

k-1 101001111 (3) 1101 (2) 1 (0) 

n1 1 (0) -- 1001001 (2) 

n2 1 (0) -- 1 (0) 

n3 10010001 (2) -- 1 (0) 

n4 10011111 (2) -- 1101 (2) 

Numbers inside ( ) are hardware costs defined in (2). 

Table 2. Constant coefficients of 9/7 lifting structure 
� 1.586134342059924 � 0.443506852043971 
� 0.052980118572961 k 0.6150870524570005 
� 0.882911075530934 k-1 0.812893066115961 
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