
A New Hardware Implementation Of The H.264
8×8 Transform And Quantization
Jeoong Sung Park

Department of Computer Engineering
Santa Clara University

Santa Clara, CA 95053, USA

Tokunbo Ogunfunmi
Department of Electrical Engineering

Santa Clara University
Santa Clara, CA 95053, USA

Abstract—H.264/AVC is the most powerful technology in video
compression/transmission area because of its high coding effi-
ciency and robustness. In this paper, we propose a new hardware
architecture of 8x8 integer transform and quantization for H.264
which promises very low resource utilization. In the architecture,
each pixel is processed one by one on a simplified pipeline without
multiplication. Thus, redundant modules, which are used for
block-based or row-based parallel processing, can be reduced.
Experimental results show that it can reduce resource usage
30% compared to previously proposed models. It can be used
for mobile applications. It covers a wide range of parameters as
well.

Index Terms—H.264, integer transform, quantization

I. INTRODUCTION
The continuing development of digital video coding has

produced ITU-T H.264/MPEG-4 (Part 10) Advanced Video
Coding (commonly referred as H.264/AVC). It provides gains
in compression efficiency of up to 50% over a wide range of
bit rates and video resolutions compared to previous standards
[1]. Besides, network friendliness and good video quality at
high and low bit rates are important features that distinguish
H.264 from other standards.
Actually, the initial H.264 specification adopted an integer

approximation of 4×4 [2]. But, the 4×4 block is not enough
for SD resolutions and above. That is, when larger than
4x4 transforms are used, significant compression performance
gains have been reported at Standard Definition (SD) and
High Definition (HD) resolutions [3]. Thus, a new integer
transform of 8×8 was proposed in the Fidelity Range Ex-
tensions (FRExt) to be added to the existing specification.
Using an 8×8 transform in addition to the 4×4 transform in
H.264/AVC, a roughly 10% bit-rate reduction can be achieved
across a wide range of content and coding parameters [10].
However, these advantages have resulted in additional com-
plexity to the H.264/AVC. To avoid the large complexity, [9]
proposed a simplified way of introducing larger transforms into
the JVT specification, while maintaining the rate-distortion
performance gain.
This ongoing technical evolution has accelerated the devel-

opment of system-on-chip (SoC) platform to support compact-
ness, low power, robustness, cheap cost, and most importantly,
real-time operation [4]. To implement DCT and quantization
blocks for H.264 on SoC, many efforts have been carried out.

References [5],[6] and [7] provide FPGA implementation of
4×4 transform and quantization which are targetted on the
initial H.264. In [4], simplified 8×8 transform and quantization
are implemented on FPGA. An architecture for adaptive block
size transform for 8×8 and 4×4 is developed in [8].
Most of previous research have deployed parallel computa-

tion of either block data or row(column) data to make system
speed up to satisfy real-time constraints. For example, [6] and
[4] process 16 block data (for 4×4 transform) and 64 block
data (for 8×8 transform) in full parallel, respectively. In [7],
4 concurrent row data (for 4×4 transform) is processed in
parallel. All those implementations result in system speeds
much faster than real-time requirements. However, they can
not avoid deploying N redundant transform and quantization
blocks, where N can be 4, 8, 16, or even 64 as the number
of parallelism. Intuitively, N redundant blocks require N
hardware area.
In this paper, we start from the idea that N hardware area can

be reduced to just one area by adjusting N to one. As a result,
we propose a minimum complexity architecture that processes
64 sequential pixel data for 8×8 transform and quantization
with reduced parallelism. It does not only satisfy real-time
constraints but also cover all range of parameters to support
accuracy and flexibility without requiring the same redundant
blocks.
This paper is organized as follows. Section II presents a

brief overview of 8×8 integer transform and quantization used
in this paper. Section III describes the proposed architecture
and performance analysis. In Section IV, we provide imple-
mentation results. We conclude in Section V.

II. BACKGROUND

A. 8×8 Integer Transform
We follow the 8x8 integer approximation of DCT proposed

in [9]-[11]. It consists of only adds and shifts without any
multiplication.
The 2-D forward 8x8 transform is computed in a separable

way as a 1-D horizontal (row) transform followed by a 1-
D vertical (column) transform, where the corresponding 1-D
transforms are given by Equation (2) and Matrix (1),

W = CXCT (1)

585978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009

Matrix C is specified as

⎡
⎢⎢⎢⎢⎢⎢⎣

8 8 8 8 8 8 8 8
12 10 6 3 8 8 −10 −12
8 4 −4 −8 −8 −4 4 8

10 −3 −12 −6 6 12 3 −10
8 −8 −8 8 8 −8 −8 8
6 −12 3 10 −10 −3 12 −6
4 −8 8 −4 −4 8 −8 4
3 −6 10 −12 12 −10 6 −3

⎤
⎥⎥⎥⎥⎥⎥⎦

.1/8 (2)

Each of these 1-D transforms can be computed via fast
butterfly operations as follows [10]:

Data-path 1:
a[0] = x[0] + x[7]
a[1] = x[1] + x[6]
a[2] = x[2] + x[5]
a[3] = x[3] + x[4]
a[4] = x[0]− x[7]
a[5] = x[1]− x[6]
a[6] = x[2]− x[5]
a[7] = x[3]− x[4]

Data-path 2:
b[0] = a[0] + a[3]
b[1] = a[1] + a[2]
b[2] = a[0]− a[3]
b[3] = a[1]− a[2]
b[4] = a[5] + a[6] + ((a[4] >> 1) + a[4])
b[5] = a[4]− a[7]− ((a[6] >> 1) + a[6])
b[6] = a[4] + a[7]− ((a[5] >> 1) + a[5])
b[7] = a[5]− a[6] + ((a[7] >> 1) + a[7])

Data-path 3:
w[0] = b[0] + b[1];
w[2] = b[2] + (b[3] >> 1);
w[4] = b[0]− b[1];
w[6] = (b[2] >> 1)− b[3];
w[1] = b[4] + (b[7] >> 2);
w[3] = b[5] + (b[6] >> 2);
w[5] = b[6]− (b[5] >> 2);
w[7] = −b[7] + (b[4] >> 2);

B. 8×8 Quantization and Scaling
Based on [10], quantization and scaling is performed ac-

cording to the following equation:

Zij = (Wij ∗ MF + f ∗ 216+n) >> (16 + n) (3)

where n is QP/6. QP is the quantization parameter, and f is
the deadzone/offset parameter with an absolute value ranging
between 0 and 1/2 and with the same sign as the coefficient
that is being quantized. MF is a multiplication factor that
depends on m (= QP mod 6) and the position (i,j) of the
element as follows.

MF [m; i, j] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Mm0 for(i, j) with (i, j) = G0

Mm1 for(i, j) with (i, j) = G1

Mm2 for(i, j) with (i, j) = G2

Mm3 for(i, j) with (i, j) = G3

Mm4 for(i, j) with (i, j) = G4

Mm5 for(i, j) with (i, j) = G5

where⎧⎪⎪⎪⎨
⎪⎪⎪⎩

G0 : i = [0,4], j = [0,4]
G1 : i = [0,3, 5,7], j = [1,3, 5,7]
G2 : i = [2,6], j = [2,6]
G3 : i = [0,4], j = [1,3,5,7]) ∩ (i = [1,3, 5,7], j = [0,4])
G4 : i = [0,4], j = [2,6]) ∩ (i = [2, 6], j = [0,4])
G5 : i = [2,6], j = [1,3,5,7]) ∩ (i = [1,3, 5,7], j = [2,6])

The matrix M is specified as:

⎡
⎢⎢⎢⎣

13107 11428 20972 12222 16777 15481
11916 10826 19174 11058 14980 142990
10082 8943 15978 9675 12710 11985
9362 8228 14913 8931 11984 11259
8192 7346 13159 7740 10486 9777
7282 6428 11570 6830 9118 8640

⎤
⎥⎥⎥⎦ (4)

III. PROPOSED ARCHITECTURE

1-D DCT Transpose
Logic 1-D DCT Quantization

& Scaling

jth Column data
for 8 cycles

X0j

X1j

X2j

X3j

X4j

X5j

X6j

X7j

Yj0, ,Yj7

Yj0

Yj1

Yj2

Yj3

Yj4

Yj5

Yj6

Yj7

jth Row data for
8 cycles

Zij ZQij

Control logic

M

f

qbits

Fig. 1. Architecture of the proposed system

We adopt architectures presented in [5] and [7], which
are used for a 4×4 integer DCT and quantization system.
The block diagram of the proposed architecture for 8×8
integer transform and quantization is presented in Figure 1,
which contains 1-D integer transform blocks, transpose logic,
quantization block, and control logic. 16-bit word length is
defined in this system. This architecture clearly reflects two
separate 1-D integer transforms and quantization as mentioned
in Section II. QP is not used as an input, which is different
from [4] which suggest the hardware implementation of QP-
processing block that computes f, qbits, P0, ..., P5 from input
signal QP. However, that block is not necessary in terms of
hardware implementation because the block does not process
data but calculate parameters used for data processing in
quantization block. Once the QP is fixed, other parameters
are also not changed. So, we assume that the QP-processing
is previously done by a software.

A. 1-D integer transform block

The architecture of 1-D integer transform block is shown
in Figure 2. Each input column vector of 8 pixels is input
to the 1-D DCT block for 8 cycles, so transformed outputs

586

>> 1

>> 1

>> 1

>> 1 >> 2

>> 2

>> 2

>> 2

>> 1

>> 1

a0

a1

a2

a3

a4

a5

a6

a7

x0

x1

x2

x3

x4

x5

x6

x7

b0

b1

b2

b3

b4

b5

b6

b7

w0

w1

w2

w3

w4

w5

w6

w7

MUX

Data-path 1 Data-path 2 Data-path 3

Fig. 2. 1-D row (column) transform block

w0-w7 are also held for 8 cycles. However, just one out of
w0-w7 is output through MUX. That is, w0, w1,..., w7 go out
of the 1-D DCT in sequential order for 8 cycles. After all, 64
cycles are required to process all pixel elements in one 8×8
block. Since each pixel in one column is processed one by
one, the transpose logic as shown in Figure 3 is very simple.
F/F indiciates a 16-bit register that consists of 16 flip flops. It
converts the output column vector to the input row vector to
the next 1-D DCT while working as a pipe-line memory.

F/F

F/F

F/F

F/F

F/F

F/F

F/F

F/F

F/F

F/F

F/F

F/F

F/F

F/F

F/F

Fig. 3. Architecture of the transpose logic

B. Quantization block

Quantization block does the function of quantization and
scaling presented in Section II-B. Since integer approximations
of 4×4 and 8×8 DCT were proposed in [12] and [10], respec-
tively, critical complexity of DCT were gone and forwarded to
the quantization block. Even though previous researches have
focused on low complexity implementation of DCT transforms
with adds and shifts, there were still parallel multipliers for
processing parallel output data from 2-D integer transform
block. Output data from 2-D transform block have longer bit
widths than system input data. Therefore, architecture of the
quantization block needs to be considered to reduce hardware

utilization of the total system. In our proposed model, only one
multiplication is required because the input data are sequential.
We also prevent the large multiplier by replacing it with adders
and shifters as shown in Fig 4. This architecture is designed to
cover all multiplication factors (MF) in Equation 3. Among 36
MFs, 12,222 (10111110111110) has the largest number (11)
of non zero partial products. So, eleven left shifters are needed.
Control logic assignes the shift index that corresponds to each
i, j, m from its look-up table. The binary tree architecture of
eleven additions occupies less hardware utilization than a real
multiplier even though its latency is 5.

<< S0

<< S1

<< S2

<< S3

<< S9

<< S10

<< S8

Zij
S0

S1

F/F

F/F

F/F

S2

S3

<< S4

<< S5

<< S6

<< S7

S4

S5

S6

S7

S8

S9

S10

F/F

F/F

F/F

F/F

F/F

F/F

f

F/F

F/F

F/F << qbits

Fig. 4. Quantization block

IV. SIMULATION AND RESULTS
The architecture is implemented in Verilog HDL and sim-

ulated with NC-Verilog 6.2. Syhthesis are performed using
Synplify Pro 9.2.4, and place and route using Xilinx ISE 10.1.
The target device chosen is Xilinx Virtex-II Pro XC2VP30
FPGA. The implementation results are as shown in Table I.

TABLE I
IMPLEMENTATION RESULT OF THE PROPOSED ARCHITECTURE

Technology Xilinx XC2VP30-7FF896
Critical Path delay (ns) 8.943 ns
CLK Frequency (MHz) 111.8 MHz

IOs 553
Slices 1624

Slice Flip Flops 251
LUTs 2887

Global Clocks 1

The critical path measured by the place and route tool is
8.943 ns. It takes sixty four clock cycles to process a 8×8
block through the integer transform and the quantization block.
Therefore the time required to process a whole frame is as
follows:

Tframe = Nblock per frame × Tblock

=
Npixel per frame

Npixel per block
× Tblock

=
Npixel per frame

Npixel per block
× Ncycle × Tcycle

587

where N cycle and T cycle indicate the number of cycles
and time required per cycle, respectively. Times required to
encode a full HD frame of 1, 920×1, 080 and a HDTV frame
of 1, 024× 768 are:

THD =
1, 920× 1, 080

8 × 8
× 8.943ns× 64 = 18.54ms

THDTV =
1, 024× 768

8 × 8
× 8.943ns× 64 = 7.03ms

THD(18.54 ms) is 1.8 times faster than the 33.3 (ms) time
required for processing each frame (assuming a refresh rate of
30 frames/sec). In the same way, THDTV (7.03 ms) is 4.7 times
faster. Hence, the proposed architecture meets the real-time
constraints for HD and HDTV as well as HD of 704×480.
As mentioned in Section I., we compare our results with [4]

and [8] which implement the 8×8 transform and quantization
on FPGA. As denoted in Table II, the number of LUTs used
in the proposed design is 9.9% and 70% of that in [4] and [8],
respectively. Hence, 90% and 30% can be saved by using the
proposed design. The main difference between our proposed
design and [4] is that we use a reduced parallel architecture
without multiplication and QP-processing block included in
[4]. Table II also explains that less parallelism can save more
area in spite of longer latency.

TABLE II
PERFORMANCE COMPARISON WITH PREVIOUS DESIGNS

[4] [8] Proposed
Critical path delay (ns) 14.598 12.930 8.943
CLK frequency (MHz) 68.5 77 111.8

LUTs 29018 4124 2887
Parallelism 64 8 1
Latency 1 16 64

V. CONCLUSION
We presented a new implementation of a 8×8 integer

transform, quantization, and scaling for H.264 on a FPGA.
To reduce hardware resource utilization, a reduced parallel
architecture that processes sequential pixel data was devel-
oped. Experiments show that our reduced parallel architecture
requires from 30% up to 90% less resources than existing
designs. In the architecture, each pixel is processed one by
one on a simplified pipeline without multiplication. The pixel-
by-pixel processing can remove redundant modules used for
block-based or row-based processing in not only the integer
transform block but the quantization block. In addition, our
quantization block is designed to cover all multiplication
factors without using a real multiplier.
The proposed design supports most of video formats by

satisfying real-time constraints. Even though it has slower
speed and longer latency than previous designs, there is other
remarkable advantage of lower hardware area as a trade-off.
Longer latency and less hardware area can be suitable for
mobile applications.

REFERENCES
[1] J. Ostermann, J. Bormans, P. List, D. Marpe, M. Narroschke, F. Pereira,

T. Stockhammer, T. Wedi Video coding with H.264/AVC: tools,
performance, and complexity. Circuits and Systems Magazine IEEE,
Vol. 4, Issue 1, pp. 7-28, 2004.

[2] T. Wiegand, G. J. Sullivan, G. Bjontegaard and A. Luthra Overview
of the H.264/AVC Video Coding Standard. IEEE Trans. Circuits Syst.
Video Technol., Vol. 13, no. 7, pp. 560-576, July 2003.

[3] S. Gordon, D. Marpe, and T. Wiegand ABT for Film Grain Reproduction
in High Definition Sequences. Joint Video Team (JVT) of ISO/IEC
MPEG and ITU-T VCEG, doc. JVT-H029, Geneva, Switzerland, May
2003.

[4] I. Amer, W. Badawy and G. Jullien High Performance Hardware
Implementation of the H.264 Simplified Transform and Quantization.
Proceedings of International Conference on Acoustics, Speech and
Signal Processing , Philadelphia, Pennsylvania, USA, Vol. 2, pp. 1137-
1140, March 2005.

[5] R. Korah, J. Raja Paul Perinbam FPGA implementation of integer
transform & quantizer for H.264 Encoder. Journal of VLSI signal
processing systems - Springer, 2008.

[6] R. Kordasiewicz, S. Shirani Hardware implementation of the optimized
transform and quantization blocks of H.264. Canadian Conference on
Electrical and Computer Engineering , Vol. 2, no. 7, pp. 943 - 946, May
2004.

[7] A. Mendez Patifio, M. A. Martinez Peiro, F. Ballester, G. Paya Ar-
chitectures for ICT on FPGA. Field-Programmable Technology, 2004.
Proceedings. 2004 IEEE International Conference on, Vol., no., pp. 403-
406, 6-8 Dec. 2004.

[8] Y. Li, Y. He, and S. Mei A Highly Parallel Joint VLSI Architecture for
Transforms in H.264/AVC. Journal of Signal Processing Systems, vol.
50, No. 1, pp. 19-32, Jan. 2008.

[9] S. Gordon, D. Marpe, and T. Wiegand Simplified Use of 8x8 Transform.
Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG, doc. JVT-
I022, San Diego, USA, September 2003.

[10] S. Gordon, D. Marpe, and T. Wiegand Simplified Use of 8x8 Transform -
Proposal. Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG,
doc. JVT-J029, Waikoloa, USA, December 2003.

[11] S. Gordon, D. Marpe, and T. Wiegand Simplified Use of 8x8 Transform -
Updated Proposal & Results. Joint Video Team (JVT) of ISO/IEC MPEG
and ITU-T VCEG, doc. JVT-K028, Munich, Germany, March 2004.

[12] H. Malvar, A. Hallapuro, M. Karczewicz and L. Kerofsky Low-
Complexity Transform and Quautization in H.264/AVC. IEEE Trans.
Circuits and Systems for Video Technology , vol. 13, No. 7, Jul. 2003.

[13] S. Kim and W. Sung Fixed-point error analysis and word length
optimization of 8x8 IDCT architectures. IEEE Trans. Circuits and
Systems for Video Technology , vol. 8, No. 8, pp. 935-940, Dec. 1998.

588

