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ABSTRACT

This paper presents a high-throughput, low-latency, hardware-
efficient fixed-point implementation of the fast affine projection
(FAP) algorithm. The proposed architecture utilizes reusable dis-
tributed arithmetic (RDA) in combination with optimizations in the
update process to enable the coefficients to be updated in a fixed
number of cycles independent of filter length. Fixed-point simula-
tions show that the effect of replacing some of the multiplications
with arithmetic shifts is minor, with RDA-FAP maintaining a faster
convergence rate than NLMS. The proposed design is also compared
against a multiplier-based design in terms of number of computa-
tions and number of clock cycles needed for a single FAP update
cycle.

Index Terms— distributed arithmetic, adaptive filters, fast
affine projection

1. INTRODUCTION

Adaptive filtering is widely utilized in applications such as echo can-
cellation, noise cancellation, channel equalization, and system iden-
tification. Typical adaptive filters use the LMS (least mean squares)
and NLMS (normalized LMS) algorithms. These algorithms are
commonly used due to their simplistic nature of implementation.
However, for colored signals such as speech, the convergence speed
of LMS and NLMS is slow. The adaptive affine projection algo-
rithm was proposed as a generalization to the NLMS algorithm [1],
and offers a faster convergence rate for colored signals but at the cost
of higher computational complexity. The fast version (FAP) offers
recursive least squares type convergence with slightly more compu-
tation than NLMS [2], but suffers from numerical instabilities due to
the way the matrix inversion is computed [3].

Recently several methods for computing the fast affine projec-
tion have been introduced suitable for fixed-point implementations,
differing primarily in how the matrix inversion problem is solved.
For example, the conjugate gradient FAP (CGFAP) [4] and Gauss-
Seidel FAP (GSFAP) [5] approach the matrix inversion problem by
reducing the problem into solving a linear system of equations us-
ing the conjugate gradient method and Gauss-Seidel method respec-
tively. Oh, et al. assume the matrix is Toeplitz and solve for the
inverse using the Levinson-Durbin recursion [6]. The majority of
the proposed FAP algorithms have been implemented using digital
signal processors (DSPs) because of the divisions involved in the
coefficient update, multiple computations, and the non-trivial datap-
ath of the algorithm. The sequential execution nature coupled with
the large number of computations restrict the maximum throughput
attainable by DSPs.
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Fig. 1. Block diagram of the RDA-FAP base unit. B represents the
number of bits.

This paper presents a hardware-efficient, high-throughput, low-
latency, fixed-point implementation of the FAP algorithm based on
the Gauss-Seidel approach. The proposed architecture achieves high
throughput and low complexity in three ways: 1) by using reusable
distributed arithmetic [7], 2) using single iteration LUT-based divi-
sion, and 3) parallelization of the coefficient update computations.
This proposed architecture is termed RDA-FAP. The computations
per output and performance of the RDA-FAP architecture is com-
pared against that of a multiplier-based FAP (M-FAP) architecture.
The computations per output include the number of additions, multi-
plications, and divisions, while the performance involves the number
of clock cycles needed to complete one adaptive cycle. The RDA-
FAP architecture is also synthesized using a Xilinx Virtex-4 LX100.

The rest of this paper is organized as follows. The fast affine
projection algorithm is presented in Section 2. The architecture and
operation of the proposed RDA-FAP adaptive filter is detailed in Sec-
tion 3, along with simulation results validating the optimizations per-
formed. Section 4 discusses the results of computations per output
and performance between the RDA-FAP and M-FAP architectures,
and concluding remarks are presented in Section 5.

2. FAST AFFINE PROJECTION

The fast affine projection algorithm is described as follows. For n <
0,

w(n) = 0, η(n) = 0, R(n) = δI, α(n) = 0, r(n) = [δ, 0]T (1)

and for n ≥ 0,

r(n) = r(n − 1) + x(n)α(n) − x(n − L)α(n − L) (2)
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Table 1. Number of Multiply-Accumulate Operations and Clock Cycles

# of MAC operations # of clock cycles

Operation RDA-FAP M-FAP RDA-FAP M-FAP

Filtering L L B + log2(L) L/N + log2(N)
Compute r̄T (n)η(n − 1) p − 1 p − 1 p − 1 1 or p − 1

Solving Rp = b p2 − p p2 − p + 20 p2 − p p2 − p + 20
Compute e(n) 2 2 2 2
Compute ε(n) and η(n) p p 1 1
Update w(n) L/B L B L/N

Total* L +
L

B
+ p2 + p + 2 2L + p2 + p + 21 2B + log2(L) + 3

2L

N
+ log2(N) + 3

* The total number of clock cycles assumes that filtering takes the longest amount of time.

R(n) =

⎡
⎢⎢⎢⎣

r0(n) r1(n) . . . rp−1(n)
r1(n) r0(n − 1) . . . rp−2(n − 1)

...
. . .

rp−1(n) rp−2(n − 1) . . . r0(n − p + 1)

⎤
⎥⎥⎥⎦

(3)

e(n) = d(n) − xT (n)w(n − 1) − μr̄T (n)η(n − 1) (4)

e(n) =

[
e(n)

(1 − μ)e(n − 1)

]
(5)

ε(n) = P(n)e(n) (6)

η(n) =

[
0

η(n − 1)

]
+ ε(n) (7)

w(n) = w(n − 1) + μηp−1(n)x(n − p + 1) (8)

where w(n) represents the coefficients of a L-tap filter, p is the pro-
jection order, x(n) = [x(n), x(n−1), . . . , x(n−L+1)]T , X(n) =
[x(n), x(n− 1), . . . , x(n− p+1)]T , P(n) = R−1(n) is the inverse
of the p×p autocorrelation matrix R(n), η(n) is a p×1 vector, ηp−1

is the bottommost element of η(n), e(n) and η(n) are the p− 1 up-
per elements of e(n) and η(n) respectively, r̄(n) is the lower p − 1
elements of r(n), and α(n) = [x(n), x(n−1), . . . , x(n−p+1)]T .

2.1. Gauss-Seidel Iteration

The GSFAP algorithm uses the Gauss-Seidel (GS) iterative method
for solving linear systems. The GS method solving the system Ax =
b is described below,

x
(k+1)
i =

1

aii

(
bi −

∑
j<i

aijx
(k+1)
j −

∑
j>i

aijx
(k)
j

)
(9)

where k is the iteration count, and i = 1, 2, . . . , N , where x and b
are N × 1 vectors, and A is a N ×N matrix. An important property

of the GS iteration is that the elements x
(k+1)
k uses the elements of

x
(k+1)
k that have already been computed in the current iteration. This

means that no additional storage is needed, and all the computation
is done in place. The GS iterative method is run until x converges to
the correct solution. By setting μ = 1 in Eqn. 5, the vector e(n) is
reduced to the scalar e(n), reducing Eqn. 6 to,

ε(n) = p(n)e(n) (10)

where p(n) is the leftmost column of P(n), and

R(n)p(n) = [1, 0]T (11)

which is then solved using the Gauss-Seidel iterative method. It has
been shown in [5] that a single iteration is enough for the FAP adap-
tive algorithm to converge. Given the initial conditions (Eqn. 1),
the assumption that R(n) is Toeplitz, and using the Gauss-Seidel
method to solve Eqn. 11, for a p = 3 case, p(n) is evaluated as

p0(n) =
1

r0(n)
(12)

p1(n) =
1

r0(n)
[−r1(n)p0(n)] (13)

p2(n) =
1

r0(n)
[−r2(n)p0(n) − r1(n)p1(n)] (14)

with a minimal number of storage elements needed since only the
current values of r(n) are stored instead of both the current and de-
layed values. The previous collection of equations is what is used in
the implementation of the RDA-FAP adaptive filter.

3. FAST AFFINE PROJECTION USING RDA

FIR filters based on reusable distributed arithmetic have been shown
to be a hardware-efficient architecture for high order digital filters,
requiring fewer resources than the multiplier-based counterpart, and
at the same time freeing up those hardware resources to be used for
other functions. This hardware efficiency is carried over to the FAP
algorithm, reducing the latency and increasing the throughput asso-
ciated with filtering (Eqn. 4). Further throughput increase can be
obtained by computing as much of the GSFAP algorithm in parallel
as possible.

3.1. Reusable Distributed Arithmetic

Distributed arithmetic (DA) is a bit serial method of computing the
inner product of two vectors with a fixed number of cycles [7]. Con-
sider the inner product of two L dimensional vectors �a and �x, where
�a is a constant vector, �x is the input sample vector, and y is the result.

y =

L−1∑
k=0

akxk (15)
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Fig. 2. (a) and (b) Convergence curves comparing the performance of RDA-FAP in different scenarios. For both plots L = 64, p = 4, μ = 1,
and ϕ = 0.95. The results are obtained by averaging 20 runs. (c) Total number of clock cycles needed per output for different cases of
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Using B-bit 2’s complement binary representation scaled such that
|xk| ≤ 1 produces

xk = −bk(B−1) +

B−2∑
n=0

bkn2−(B−1)+n
(16)

where bkn are the bits (0 or 1) of xk, bk(B−1) is the most significant
bit, and bk0 is the least significant bit. Substituting Eqn. 16 into Eqn.
15 yields

y = −
L−1∑
k=0

akbk(B−1) +

B−2∑
n=0

[
L−1∑
k=0

akbkn

]
2−(B−1)+n

(17)

Equation 17 represents the distributed arithmetic computation. The
values of bkn are either 0 or 1, resulting in the bracketed term in
Eqn. 17 having only 2L possible values. Since �a is a constant vec-
tor, the bracketed term can be precomputed and stored in memory
using either a lookup table (LUT) or ROM. The lookup table is then
addressed using the individual bits of the input samples, xk with the
final result y computed after B cycles, regardless of the lengths of
the vectors �a and �x. Typical DA methods require a memory with
memory size exponentially dependent on the filter length whereas
reusable DA has a linear dependence of memory size on length.
The linear dependence requires extra additions, introducing extra
log2(L) clock cycles. A large portion of the RDA architecture can
be reused, saving hardware resources while maintaining low-latency
and high-throughput for large filter sizes. The use of RDA also en-
ables the update of all the coefficients (Eqn. 8) to be performed in
a fixed number of cycles that is independent of filter length. The
RDA-FAP base unit block diagram is shown in Fig. 1.

The operation of the RDA-FAP base unit is as follows. During
the filtering phase, the coefficient bits are read out from the coeffi-
cient memory, controlling the partial product generation. Once fil-
tering is complete and ηp−1(n) is ready, the coefficients are updated
simultaneously due to the way they are stored in memory (Fig. 1).

3.2. Coefficient Update Mechanism

The computations for coefficient update can be performed in parallel
with filtering up to a certain point, where the value of e(n) is needed.
Considering the ability of RDA to complete the filtering operation
in a relatively small and fixed number of cycles, the calculations
leading up to e(n) (Eqns. 2, 11) should be completed by the time

e(n) needs to be computed. RDA-FAP implements the coefficient
update equations using a single multiply-accumulate (MAC) unit in
conjunction with p adders. The order of operations is described in
the following paragraph.

The MAC unit is first used to compute Eqn. 2. Once r(n) is
available, the terms in the square brackets of Eqns. 12-14 are sequen-
tially computed. The reciprocal 1/r0(n) is computed using LUT-
based division during the execution of the previous MAC operations.
When the square bracket terms are computed, multiply through with
the reciprocal to obtain p(n). At this time e(n) should be ready,
however instead of multiplying the vector p(n) by the scalar e(n),
the multiplication operation is converted into an arithmetic shift right
operation on p(n). The error value e(n) is quantized into 8 levels
spanning the entire range of e(n), with each level corresponding to
a different shift amount. The vector η(n) is simultaneously updated
with the shifted version of p(n). In this way no storage is needed
for ε(n). With η(n) updated, the final coefficient update step can
be performed. Similar to the update of η(n), instead of computing
μηp−1(n)x(n − p + 1), the correction term μηp−1(n) is quantized
into an arithmetic shift operation on x(n − p + 1). The coefficients
can be updated simultaneously now that no intermediate multiplica-
tions are required. The update is performed in a bit serial manner,
where the matching individual bits of the shifted xk(n− p + 1) and
wk(n−1) are added/subtracted together to update the corresponding
bit of wk(n).

3.3. LUT-based Division

The computation of p(n) using the Gauss-Seidel method involves
a division for every element of p(n). With R(n) assumed to be
Toeplitz, the p divisions involve dividing by the same number, r0(n).
The reciprocal of r0(n) is computed, stored, and multiplied to the
elements of p(n). The reciprocal is computed by first normalizing
r0(n) to the range of 1 < r̂0(n) < 2. Then K bits from the frac-
tional part of r̂0(n) are used as the address into a lookup table that
holds 2K corresponding precomputed reciprocal values. The nor-
malization operation is implemented by finding, from MSB to LSB,
the first 1 in the bits of r0(n). The location of the 1 is noted, and
K bits to the right of that 1 are used as the address into a lookup
table. The quotient is read out from the table, and shifted to the
left by the number of shifts needed to move the first 1 to the MSB
position. In the RDA-FAP implementation, the normalization and
reciprocal lookup operation requires one clock cycle, and the lookup
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table contains 16 entries.

3.4. Simulation Results

The fixed-point RDA-FAP was simulated in a system identification
configuration against floating-point versions of FAP and NLMS. The
input to the system is an AR(1) process represented by x(n) =
w(n) + ϕx(n − 1) where w(n) is white gaussian noise and 0 <
|ϕ| < 1. The results show that the quantization of the e(n)p(n)
and ηp−1x(n − p + 1) operations into arithmetic shifts, along with
the approximate reciprocation via LUT-based division, are valid op-
timizations (Fig. 2(a)). When combined with the use of RDA, the
optimizations enable the rapid computation of a single FAP adaptive
cycle. The effects of bit precision width are also shown in Fig. 2(b).
For decreasing bit precision, the convergence rate of RDA-FAP de-
clines faster than for fixed-point NLMS. However, for the same pre-
cision, RDA-FAP still converges faster than NLMS for correlated
inputs.

4. RESULTS AND COMPARISONS

The proposed RDA-FAP adaptive filter is compared against a
multiplier-based (M-FAP) approach using the same GSFAP al-
gorithm. The two designs are evaluated in terms of computations
per output (number of operations), and performance (number of
clock cycles).

4.1. Computations per Output

The number of additions and multiplications are presented in Tbl.
1. For simplicity a B-bit addition is counted as one B-bit MAC,
and a division operation is counted as 20 MAC operations. The re-
sults from Tbl. 1 show that for filter lengths equal to or larger than
the fixed-point bit precision (L ≥ B), the RDA-FAP approach re-
quires fewer operations. Depending on the application, the savings
in number of operations could be significant, even when using 16 or
32 bit precision. For example, adaptive filters used in acoustic echo
cancellation typically have filter lengths of L = 1024 or longer.

4.2. Performance

The computations per output of RDA-FAP and M-FAP are very sim-
ilar to each other primarily because of the way the coefficient update
is computed. While there are computation gains in using RDA-FAP,
when both designs are implemented and analyzed in terms of per-
formance, the gains becomes even greater. Table 1 lists the number
of clock cycles needed to compute individual parts of the FAP algo-
rithm. The total number of clock cycles assumes that the filtering op-
eration requires more cycles to complete than the parallel coefficient
update. N represents the number of multipliers used for filtering, it
does not include the multiplier(s) used for coefficient update. With
M-FAP, if p multipliers are available during filtering, then p(n) and
r̄T (n)η(n−1) are each completed in a single cycle. Otherwise p(n)

and r̄T (n)η(n− 1) each require p− 1 cycles. Table 1 also assumes
that both RDA-FAP and M-FAP have enough hardware resources to
compute ε(n) and η(n) in a single cycle. If the amount of time it
takes to complete a B-bit multiply-accumulate is assumed to be the
same as a B-bit addition, from Tbl. 1, for the case where L = 1024,
B = 16, N = 32 + 1, and p = 4, the total number of clock cycles
per sample for RDA-FAP is 32 + 10 + 3 = 45, and for M-FAP the
total number is 64 + 5 + 3 = 72. Figure 2(c) shows the effect of B,
N , and L on the total number of clock cycles.

Table 2. RDA-FAP Synthesis Results

Filter Length 128 256 512

Number of Slices 9063 16698 32439
Equivalent Gate Count 181433 331864 636783

4.3. FPGA Synthesis

The RDA-FAP design was modeled using VHDL and synthesized
onto a Xilinx Virtex-4 LX100 FPGA. This FPGA has 96 XtremeDSP
slices which can be used to implement high speed multipliers. Dif-
ferent filter lengths were synthesized, ranging from 128 to 512 taps,
with 16-bit precision for the inputs and outputs. The synthesis results
are shown in Tbl. 2.

5. CONCLUSION

A high-throughput, low-latency, hardware-efficient architecture for
the fast affine projection algorithm has been presented. The proposed
RDA-FAP design uses reusable distributed arithmetic in conjunction
with algorithm optimizations to significantly reduce the number of
clock cycles required per adaptive cycle. For the case where L =
1024, N = 16, and B = 16, one FAP adaptive cycle would require
135 cycles, with RDA-FAP that number has been reduced to 45, a
factor of 3 in savings.
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