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ABSTRACT

Lattice reduction-aided equalization techniques have emerged as a
low-complexity method to achieve the same diversity as maximum
likelihood detectors. We address the VLSI implementation of these
LR-aided equalizers by modifying the CLLL algorithm from a fixed-
point hardware perspective. We then apply the modified algorithm
together with additional micro-architecture and operation schedul-
ing enhancements to create an updated CLLL processor. Finally,
through BER simulations and FPGA synthesis results we demon-
strate the suitability of our CLLL processor for integration into a
64-QAM MIMO system.

Index Terms— MIMO, Lattice Reduction, CORDIC

1. INTRODUCTION

Lattice reduction (LR) techniques have been incorporated into the
equalization process to improve the performance. Currently, the
Lenstra, Lenstra, Lovasz, (LLL) algorithm [5] has been considered
almost exclusively to perform LR and has been extended to the com-
plex field to reduce the complexity further [2, 7]. Both numerical
simulations [2] and theoretical proof [7] show that complex LLL
(CLLL)-aided low-complexity equalizers achieve the same diversity
as (near-) maximum likelihood equalizers (MLE) for i.i.d. channels.
Compared to near-MLEs such as the sphere decoding (SD) method,
the major advantages of LR-aided equalizers are the following: (i)
Both the average complexity and complexity variance of LR-aided
equalizers are much lower; (ii) The complexity of LR-aided equaliz-
ers does not depend on the SNR or constellation size but exclusively
on the channel matrices, while the complexity of the SD method in-
creases dramatically as SNR decreases and the constellation size in-
creases; (iii) When the channel is invariant over several transmission
blocks, e.g., slow-fading environment, LR-aided equalizers require
the LR channel processing once, but the SD method requires a tree-
search for each new received signal vector.

However, the iterative nature of the CLLL algorithm makes the
complexity random and thus renders the economic real-time VLSI
implementation challenging. Therefore, there are doubts if LR tech-
niques are feasible in real-time communication systems. Currently,
the only LR dedicated VLSI implementation reported in literature
is the Brun’s algorithm-based channel precoder described in [1].
Brun’s algorithm achieves lower average complexity than the CLLL
algorithm as the result of simplifications such as eigenvector approx-
imations, which lead to reduced performance [8] (5dB loss on coding
gain compared with CLLL).

In this paper we continue our work toward a resource-efficient,
low-latency CLLL processor [3] by proposing, analyzing, and im-
plementing fixed-point hardware-driven modifications to the CLLL
algorithm.
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2. CLLL-AIDED MIMO DECODING

Consider a V-BLAST multi-antenna system with N; transmit-
antennas and N, receive-antennas. The data stream is divided
into N; sub-streams and transmitted through N; antennas. Let
s € SNt represent the N; x 1 transmitted symbol vector at one
time slot, where S is the signal constellation, and H be the channel
matrix that consists of N, X N; independent identically distributed
(i.i.d.) complex Gaussian random variables with zero mean and
unit variance. The N, X 1 received signal y can be expressed as
y = H s+ w, where w is the white Gaussian noise vector observed
at the NV, receive-antennas.

The pseudo code of the CLLL algorithm is given in Table 1.
Basically, the CLLL algorithm operates on the QR decomposition
of matrix H to generate the reduced matrix H = HT, where T'
is a unimodular matrix as shown in [3,6]. The QR decomposition
H = QR satisfies the following two conditions:

_ 1 - _ 1~
IR[Rik]l < SIRil, [S[Rixll < SRl , Vi<k, (D
5|Rk—1,k—1\2 < \Rkk|2 + |Rk—1,k|2 S VEeE[2,N], (2

where the parameter ¢ is fixed as % in this paper but can be arbitrarily
chosen from (%, 1) [7]. Eq. (1) is usually referred to as the size
reduction condition, while Eq. (2) is called the § condition. The
CLLL algorithm functions by alternately forcing the size condition
true (Lines 3-7 in Table 1) and the ¢ condition true (Lines 9-13) for
progressively larger k x k upper-left sub-matrices of the R matrix
and completing basis updates on the R (Line 11) and @ matrix (Line
12) accordingly.

Before modifying the CLLL algorithm from a fixed-point hard-
ware perspective, we give the following two lemmas:

Lemma 1 For the matrix H with i.i.d. complex Gaussian entries
with zero mean and unit variance having QR decomposition H =
QR, the magnitude of elements of R is bounded by B when satura-
tion quaniization is adopted. Specifically, when H is a 4 X 4 matrix,
B =2%%,

Proof: Since each entry of H is complex Gaussian distributed with
zero mean and unit variance, we know 2|k, || is Chi-square dis-
tributed with degrees of freedom 2NN,., where h.,, is the n™ column
of H. Thus, the upper bound B can be determined according to the
target overflow probability, i.e., the probability of the column norm
||| exceeding a bound B corresponds to one overflow event every
190 years for an IEEE 802.11n system that requires the processing
of 128 MIMO channel matrices every 4 us [4]. Assuming that we
adopt saturation quantization at the receiver, B safely upper bounds
the elements of R. Specifically, when N, = N; = 4, we can find
B = 22844 [}
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Table 1. The Complex LLL Algorithm
(D [Q,R,T]=sorted QR (H); § = 3; k=2;
(2) while k < m
3) forn=k—1:-1:1

4) u = round(Ry, 1/ Rn.n)

(5) Rl:n,k = Rl:n,k —Uu- Rl:n,n

(6) Tr=Tr—u-Tn

(7) end

®) if O|Rr—1k-1* > |Rek|* + |Re—1.x]?

) Swap (k — 1)" and k" columns in B and T'
— 1 Ri_ip—1  Rrp—

1o (? | Ri—1:k 51| | —Rrk—1 Rk717k71:|

(11) Ri—t1:kk—1:m = ORk—1:6 k—1:m

(12) Quh1k = Q. p_1.,07

(13) k = max(k — 1,2);

(14) else

(15) k=k+1

(16) end

(17) end

With the following lemma, it is clear that B also upper bounds
the diagonal elements of R during the CLLL processing. As a re-
sult, the real and imaginary parts of the off-diagonal entries of R are
bounded by %B after size reduction.

Lemma 2 During the CLLL processing, the maximum magnitude of
the diagonal elements of R does not increase.

Proof: Notice that the CLLL algorithm only updates the diagonal
elements of R when the ¢ condition (2) fails (Line 8), which means
|Ri—1.5-1)> > |Rix|® + |Rr—1,1|>. After basis updating, the
squared magnitude of the (k — 1)™ and k™ diagonal elements are

|Rk—1,k—1|2 — |ék—1,k|2 + |Rk,k|27
| R 1|

Rkl — — RN
|Ri—1,k]? + | Rk

|Re—1,6-11%,

both of which are less than the original | Ry,_1 ,_1|?. Thus, the max-
imum magnitude of the diagonal entries of R does not increase. W

3. MODIFYING EFFECTIVE CLLL

The effective LLL algorithm was introduced in [6] for concatena-
tion with a successive interference cancelation (SIC) detector. Es-
sentially, only the first inner-loop (Lines 3-7 in Table 1) is executed
such that at the end of the effective LLL algorithm the R matrix only
satisfies the size condition in (1) for s = k£ — 1. Although the effec-
tive LLL algorithm greatly reduces the CLLL algorithm complex-
ity, the R entries that are not size-reduced are allowed to increase
uncontrollably, which is unacceptable in a fixed-point hardware im-
plementation. In this section, we propose to relax the size reduction
condition and guarantee an upper-bound on the elements of matrix
R.

We first examine how the entries of matrix R can increase dur-
ing a relaxed size reduction process. Define lines 3 to 7 in Table 1 as
the inner-loop and lines 2 to 17 as the outer-loop. For the outer-loop
on the k™ column, if we let R;L 1, represent the intermediate value of

R, after the first (k — n — 1) inner-loop iterations but before the
size reduction on the n™ row, and uy, 1 denote the v value in line 4 at

the (k — )™ inner-loop iteration, then
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The summation on the righthand side involves Rn, 1, which are the
results of size reduction operations in previous outer-loops (when the
CLLL algorithm was operating on upper-left square matrices smaller
than k x k). We can relax the size condition in (1) on these elements
by associating a ¢,;; > % with each R,, ; and only requiring that

’%[Rn,l}’ 3 ’S[Rn,l]’ < (;bn,l ‘Rn,n .

“)

Noting that in the original CLLL algorithm, all the ¢’s are % This
relaxed size condition reduces the complexity of the size reduction
operation because now each inner-loop need only be executed if the
above condition is not true.

Therefore, we can upper bound the magnitude of the real com-
ponent of R;, ;. in (3) by

k—1
[RURws)[+ > (Rluwell + STrl]) Snt [Ron|

l=n+1

()

We can also relax the size condition on the elements of the k™ col-
umn that are updated during the previous inner-loop iterations of the
current outer-loop iteration to obtain

‘?R[Rék} — %[uz,k]éz,z’ < ¢k ‘Rz,z‘ (6)
By applying the upper bound B to the diagonal element ‘Rl,l |, we

can rewrite (6) as
[Rw k]| ‘Rz,z

<GB + [ RIRL 4| )

Finally, as shown in [7, Appendix B], we have ’Rnn‘ < (0 —

n—l
3) 2

Rl,l ‘ We substitute this result with § = %, and (7) (repeating
for the imaginary parts) into (5) to obtain

‘%[R;k}‘ < ‘%[Enk]‘ +

S 2 (26008 WAL+ [31F0])

l=n+1

For a particular k outer-loop iteration, we can begin with this expres-
sion for the n = k — 1 inner-loop iteration and recursively substi-
tute. Assuming the ¢’s are symmetric with respect to the real and
imaginary components and do not change during the process of the
algorithm, we obtain

‘@R[R;,k]( < Ynx B+ ]%[Rn,k]] +

5 e (Ria] +[0tnl]).

p=n+1

where the a’s and 7’s are functions of the ¢’s.

Note that at the end of an outer-loop for a particular k the
[RIRy.0]| and |S[R,.0]
p # k — 1 due to the relaxed size condition, and by B forp = k — 1
due to the ¢ condition. If we additionally enforce an absolute %B
upper bound on the p # k£ — 1 elements (executing the appropriate
inner-loop iteration as needed), then the maximum energy of the
sub-vector consisting of the first to the (k — 1)™ elements of the £™
column is

terms are upper bounded by ¢, B for

k—1

~ k—2
> Ryl < B? (1 +-5= ) ©9)
p=1



This upper bound is significant because it is the maximum energy
that could be re-distributed among the sub-vector elements due to
subsequent basis updates (as § conditions fail and the CLLL algo-
rithm operates on smaller matrix sizes). To maximize the rightside
in (8), we assume that subsequent basis updates distribute the en-
ergy among the sub-vector elements to maximize this upper bound.
Solving this constrained maximum problem, we obtain

k—1
~ 1
[RIR | < B | o+ | F (2 + Y af,’k> (10)
p=n+1

and reach a similar upper bound for the imaginary components. By

designing hardware around these upper bounds, we can safely utilize

variants of the effective CLLL algorithm in fixed-point implementa-
tions.

4. ARCHITECTURE IMPROVEMENTS

The CLLL processor in our initial work [3] consists of a main data-
path that handles the size reduction and basis update operations and
a secondary datapath that checks the ¢ condition and computes the
©® matrix. To improve the area and throughput metrics of the CLLL
processor, we alter the architecture to implement a modified effec-
tive CLLL algorithm, optimize the datapath width using the upper
bounds in Section 3, and implement additional sub-module changes.
Throughout our discussion we assume that the target system is the
MIMO system described in Section 2.

4.1. Effective CLLL Scheme

To use a modified effective CLLL algorithm we must first decide
what extent to weaken the size condition in our hardware implemen-
tation. As described in [6] to maintain the Bit-Error-Rate (BER)
performance of LLL-aided equalizers, the size condition cannot be
relaxed for the Rj_1, elements. Therefore ¢p_1,1 = % and we
must always execute the first iteration of the inner-loop. Simula-
tions of the example 4 x 4 MIMO system from Section 2, however,
reveal that by increasing all the other ¢’s from % to % and addition-
ally forcing a size reduction operation when the %B absolute upper
bound is not satisfied, the average number of inner-loop iterations
for n < k — 1 is reduced by a factor of 4.

4.2. Main Datapath

We can implement the chosen effective CLLL scheme with only
a small amount of additional hardware, and then reduce the re-
quired integer bits in the main datapath modules using the upper
bounds derived in (10). The main datapath consists of an integer-
rounded divider module, complex multiplier pipeline, and an ac-
cumulator/retire buffer to buffer the evolving R;., , matrix entries
(Line 5). The divider in the CLLL processor consists of a single
Newton-Raphson (NR) iteration-based reciprocation module and a
multiplication pipeline. To compute the integer-rounded quotient in
Line 4, the integer-rounded divider computes a reduced-precision
reciprocal of the R, , matrix element, multiplies this reciprocal by
the Rn,k complex element, and appropriately integer-rounds the real
and imaginary parts of the quotient. The divider also contains logic
to detect the |R[u]|, |S[u]| = 0, 1 cases and bypasses the multiplica-
tion pipeline appropriately. Part of this logic includes a comparator
to detect [R[Rn k]|, [S[Rn.k]| < 2|Rn.n|, which is the same logic
required to check the relaxed size condition of the chosen effec-
tive CLLL scheme. Therefore the only additional control overhead
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required to implement the chosen effective CLLL scheme is a com-
parator to check the absolute bound, |R[Rn k]|, |S[Rn.k]| < 3B
We are now able to simplify various parts of the main datapath:

e Since the diagonal elements of the R matrix are upper
bounded by B = 223, the NR-based reciprocation unit
only requires 3 integer bits.

e Since the dividend (Rn,k) can increase during the size reduc-
tion process (Lines 3-7), it requires a larger number of integer
bits. The dividends are the R;y . elements defined in Section
3. Evaluation of the upper-bound in (10) reveal that given our
chosen effective CLLL scheme, all the dividends are bounded
above by 27-7°. Hence 8 dividend integer bits are sufficient.

e After the size reduction operation of a particular k£ outer-
loop iteration, the off-diagonal elements are upper bounded
by %B, but subsequent basis updates could increase the mag-
nitude of these matrix elements. In the worst case the maxi-
mum energy of 22(3.34) ( (9) evaluated for £ = 4) could be
redistributed to the real or imaginary component of a single
matrix element. Therefore the R matrix storage requires 4
integer bits.

4.3. Secondary Datapath

The secondary datapath consists of a Householder CORDIC mod-
ule that computes the square root of the righthand side of line
8 and then subsequently computes the parameters to form the
© matrix if a basis update is required. This is accomplished
by grouping the righthand side components into a real vector

_ - - T
[Rk,k7 R[Rr—1,k], S[Ri—1,k]
Householder vectoring operations can be used to compute the norm

of this 3D vector to a certain precision within a constant CORDIC
gain factor, C' = H;le i

v o= Then a sequence of J

C(lv[[+e)er=A;- Av, 1n

where multiplication by A, can be implemented with shift and ad-
dition operations, A; A7 = ¢ZI, e; = [1,0,0]%, and € is the error
term introduced by the finite number of vectoring operations. In the
hardware implementation, the righthand side in (11) is iteratively
computed with a barrel shifter and adder tree, and then multiplica-
tion by 1/C compensates for the CORDIC gain factor. The ® matrix
parameters are contained in v/||v||. These can be computed by ap-
plying the transpose of the A; matrices in the opposite order to the
vector (1/C)ey:

T T 1 . v
A7-47 (ger) = o' .

Given this understanding, we can again apply the upper bounds
derived earlier. The v vector consists of a diagonal element, which is
upper-bounded by B and two off-diagonal elements, which after the
size reduction operation, are upper bounded by éB. Therefore the

righthand side in (11) is upper bounded by D = C (B\/g + e).

For a reasonable choice of €, we find that D = 23-%°. Therefore the
internal Householder CORDIC datapath requires 4 integer bits.
Given the low number of integer bits required, we consider an
additional architecture change to accelerate the computation of the
© matrix. Due to the reversed order that the A; matrices are ap-
plied in (12), the normalized v vector computation must begin after



Table 2. VLSI Implementation Results

xc4vIx80-12 | xcSvix110-3
Real Multipliers 6/96 6/64
Gate Equivalents 79,308 64,693
Slices 3,322/35,840 | 1,369/17,280
Clock frequency 164 MHz 205 MHz
Average cycles per matrix 102 102

these matrices are determined. Therefore the ® matrix computation
requires 2.J cycles. Slight manipulation of (11) reveals that

v

[|v]| + € C

=elA; A (lei), (13)
where v; is the i™ element of v and e; is the standard Euclidean
basis vector. This formulation suggests the utility of a Householder
CORDIC architecture that has been unrolled by a factor of four such
that a vectoring operation and three rotation operations can be com-
puted simultaneously. In this architecture wire shifts reduce the com-
plexity of the barrel shifters. Especially in an FPGA where multi-
plexing is resource-intensive, this hardware reduction partially off-
sets the quadrupled adder complexity. The net result is an archi-
tecture only requiring double the FPGA resources. In addition the
unrolling allows more effective hardware re-timing, resulting in a re-
duced critical path. Given that this architecture requires only J + 3
cycles (compared to 2.J cycles) to compute the ® matrix, we adopt
this architecture for the updated CLLL processor.

5. RESULTS

To verify our integer bits choices and to determine the required num-
ber of fraction bits we conduct simulations of a 64-QAM 4 x 4 V-
BLAST transmission with LR-aided successive interference cance-
lation (LRSIC) being employed at the receiver. We assume that the
quantized channel state information and quantized received signal
are passed through three modules to obtain the estimate of the trans-
mitted symbol vector: a sorted QR decomposition (SQRD), a CLLL
processer, and a SIC module. A fixed-point CLLL processor model
mimics the exact behavior of the hardware implementation. The
BER results shown in Figure 1 demonstrate that if we adopt a [5.13]
R matrix number representation, [2.13] Q matrix number represen-
tation, and the 7" and u representations from [3], then the simulation
results are nearly identical to a floating-point implementation. We
also note that no overflow events occurred during processing of any
of the 2 million channel instances, as expected.

We then realized the CLLL processor on an FPGA by using Syn-
plify Pro for synthesis and Xilinx ISE 9.1 for P/R. These results are
shown in Table 2. As a result of the reduced integer bits require-
ments, the number of multipliers is reduced from 10 [3] to 6 and the
other area metrics are reduced as well. The updated CLLL processor
on average can process over 2 million channel matrices / second. We
expect at least a doubling of the clock frequency when this design is
realized in a custom 65 nm silicon implementation.

The random cycle count nature of the CLLL processor is a con-
sequence of the random complexity of the CLLL algorithm, which is
also seen in sphere decoding algorithms. With additional buffering
for the original R and @ matrices (before the lattice reduction), the
CLLL processor could be integrated into a hybrid equalizer that uses
the original R and Q matrices for the equalization process until the
R and @Q matrices are ready.
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Fig. 1. 64-QAM, LR-aided Successive Interference Cancelation
(SIC) equalizer fixed-point simulation results for a variety of R ma-
trix bit precisions.

6. CONCLUSION

In this paper we rigorously analyzed the effect of relaxing the size
condition in the CLLL algorithm, resulting in a modified Effective
CLLL algorithm that reduces the complexity of the size reduction
operation and requires negligible additional hardware resources. By
applying this analysis to our original CLLL architecture with other
optimizations, we were able to improve greatly the area and through-
put metrics. Given the general treatment of the analysis, other mod-
ified effective CLLL schemes can be explored, and our analysis can
be applied to arbitrary square antenna array sizes.
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