
BANDWIDTH ADAPTIVE HARDWARE ARCHITECTURE OF K-MEANS CLUSTERING FOR
INTELLIGENT VIDEO PROCESSING

Tse-Wei Chen and Shao-Yi Chien

Media IC and System Lab
Graduate Institute of Electronics Engineering and Department of Electrical Engineering

National Taiwan University
BL-421, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan

{variant, sychien}@media.ee.ntu.edu.tw

ABSTRACT

K-Means is a clustering algorithm that is widely applied in many
elds, including pattern classi cation and multimedia analysis. Due

to real-time requirements and computational-cost constraints in em-
bedded systems, it is necessary to accelerate K-Means algorithm by
hardware implementations in SoC environments, where the band-
width of the system bus is strictly limited. In this paper, a band-
width adaptive hardware architecture of K-Means clustering is pro-
posed. Experiments show that the proposed hardware has the maxi-
mum clock speed 400MHz with TSMC 90nm technology, and it can
deal with feature vectors with different dimensions using ve paral-
lel modes to utilize the input bandwidth ef ciently.

Index Terms— K-Means, clustering methods, pattern recogni-
tion, parallel architectures, hardware design.

1. INTRODUCTION

Clustering is a fundamental and important technique in unsupervised
machine learning and data mining, and K-Means is a well known
algorithm that is suitable to many kinds of multimedia applications,
including image and video segmentation [1, 2]. Many issues of K-
Means, including the initialization of centroids [3] and acceleration
of speed [4], are explored. Besides, due to real-time requirements
of K-Means for image segmentation and video imaging, many kinds
of hardware acceleration schemes are also proposed [5, 6]. There
are also methods using ltering algorithm and KD-trees for FPGA
implementation [7] and software/hardware co-design techniques [8].
The hardware design of K-Means clustering has received more and
more attention recently.

In our previous work, a Silicon Intellectual Property (SIP) of
K-Means algorithm is proposed to accelerate image segmentation in
SoC environments for embedded systems [9]. The K-Means SIP can
handle ve dimensional feature vectors ef ciently by using paral-
lel processing elements, and the performance of image segmentation
is tremendously higher than other processors. However, when the
number of dimensions is smaller than ve, the system bandwidth
and processing elements become wasted since these resources are
not utilized well. The bandwidth issue is signi cant for K-Means
SIP since the same input vectors needs to fed to the hardware it-
eratively, consuming large amount of bandwidth resources. There-
fore, a new K-Means clustering hardware architecture, which em-
ploys bandwidth adaptive mechanism, is proposed in this paper. Not
only does it have much higher exibility and robustness, but it also
achieves better performances than the previous work. In addition,

Control
Unit

8-Layer
Parallel

M-S
PE Set

Parallel
E-M

Distance
Calculator

Set

Summation
Updating
Engine

Vector Divider

Centroid Maintainer

Pseudo Random
Number Generator

Input Vector Buffer Labeling
Engine

Convergence Monitor

Data_In

Data_Out
K

Euclidean

Seed

Mode

Iteration

Size

Label_En

Fig. 1. An overview of the proposed architecture.

both Manhattan distance and Euclidean distance can be selected for
the distance measurement by using the same hardware architecture.
Furthermore, there are a total of ve parallel modes to con gure
the processing elements and to allocate feature vectors to different
computing resources, and the random initialization method is imple-
mented in the hardware modules to accelerate the processing speed
and to nd appropriate solutions for clustering.

2. K-MEANS ALGORITHM AND HARDWARE
CONSIDERATIONS

K-Means clustering algorithm regards the i-th input data xi as a D-
dimensional feature vector, which is represented as

xi = (xi,1, . . . , xi,D), (1)

where D is the number of vector dimensions. Owing to hardware-
cost constraints in embedded systems, the proposed hardware is de-
signed to deal with clustering problems with feature vectors whose
dimension number D ≤ 16. The iterative steps of K-Means cluster-
ing algorithm used in the proposed hardware are stated as follows.
Step 1: According to the cluster number K, K vectors are randomly
selected to be centroids of K clusters. Each centroid is then rep-
resented as μ(0)

k , where k stands for the k-th centroid. The hard-
ware needs to read all the input vectors before randomly determining
K centroids. This approach, also called Forgy initialization [3], is
friendly to hardware design.

573978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009

Table 1. Five Parallel Modes of the Proposed Hardware
Parallel Mode Mode-A Mode-B Mode-C Mode-D Mode-E
Vector Dimension 1 1 – 2 1 – 4 1 – 8 1 – 16
Processing Speed ×16 ×8 ×4 ×2 ×1

Step 2: Each input vector is then assigned to its corresponding clus-
ter according to the nearest mean function, which is de ned as

φ(t)(k|xi) =

(
1, if k = arg min

j
D(xi,μ

(t)
j)

0, otherwise.
, (2)

where μ(t)
j denotes the centroid of the j-th cluster in the t-th iter-

ation, and D(.) is the distance measurement. Both Manhattan dis-
tance and Euclidean distance can be selected for distance measure-
ment by users.
Step 3: To update the centroid of each cluster, the following equation
is used:

μ
(t+1)
k =

NP
i=1

φ(t)(k|xi)xi

NP
i=1

φ(t)(k|xi)

, (3)

where N is the total number of input vectors.
Step 4: Whether the iteration should stop or not is determined ac-
cording to the total distortion, which is de ned as

Δ(t) =
1

N

NX
i=1

KX
j=1

φ(t)(j|xi)D(xi,μ
(t)
j). (4)

The iteration stops if the maximum number of iteration is reached or
|Δ(t+1) − Δ(t)| < ThΔ, where ThΔ is a small positive constant,
and it continues to the next step. Otherwise, it will jump to step 2 for
the (t + 1)-th iteration.

Finally, each input vector is assigned to the nearest neighbor of
cluster centroids, and all vectors are segmented to K clusters. Since
this iteration method does not guarantee that the best clustering re-
sults will be found in the solution space, the total distortion in (4) can
be used to evaluate the tness of clustering results when the value
of K is xed. In addition to real-time requirements in multimedia
applications, another purpose of accelerating K-Means using hard-
ware is to obtain clustering results close to the global solution by
ef ciently repeating the algorithm with different initializations.

3. PROPOSED HARDWARE ARCHITECTURE

The proposed K-Means hardware is designed to work under the in-
telligent video processing platform where the bandwidth of bus is
128 bits. In addition to the proposed K-Means hardware, there are
other Silicon Intellectual Properties (SIPs) connected to the bus to
share the same on-chip memory. The bit-width of each dimension
of the input vector is assumed to be 8-bit, and vectors with the max-
imum dimension number (16 dimensions) exactly t the bandwidth
of the 128-bit system bus. One of the main contribution of the pro-
posed hardware, the bandwidth adaptive mechanism, is realized by
ve parallel modes for different vector dimensions. The details of

each mode are shown in Table 1, and suitable modes can be selected
to obtain the best performance. An overview of the proposed K-
Means clustering hardware is illustrated in Fig. 1, and the function-
ality of each module will be explained in the following subsections.

DABS

Data_A1

Data_B1

Euclidean

Data_Out

Dis

Dis_B

Dis_A

Control

Min

(a) (b)

EM

EM

EM

EM
MS

MS

MS

Data_1
Centroid_1

Data_2
Centroid_2

Data_3
Centroid_3

Data_4
Centroid_4

EM

EM

EM

EM
MS

MS

MS

Data_5
Centroid_5

Data_6
Centroid_6

Data_7
Centroid_7

Data_8
Centroid_8

M Layer3_Label1

(Layer1) (Layer2) (Layer3)

Layer1_Label2

Layer1_Label3

Layer2_Label2

Layer1_Label4

Layer1_Label1

Layer2_Label1

Euclidean
mode

(c)

Fig. 2. (a) The architecture of “E-M distance calculator” module. (b)
The architecture of “M-S Processing Element (M-S PE)” module.
(c) The architecture of “Parallel E-M Distance Calculator Set” and
“3-Layer Parallel M-S PE Set” module.

3.1. Control Unit and Pseudo Random Number Generator

“Control Unit” module controls all the components inside the K-
Means hardware, managing the connection of input signals and mod-
ules. Initially, “Pseudo Random Number Generator” module gener-
ates K random numbers and stores them into a local buffer. When
the input vectors are fed into “Control Unit” module, vectors whose
input order is the same as any of the selected random number are
saved as the initial centroids. K centroids will be initialized using
this approach after all the input vectors are checked, and these cen-
troids are stored in “Centroid Maintainer” module to be updated by
iterative steps.

3.2. Parallel E-M Distance Calculator Set

“Parallel E-M Distance Calculator Set” contains 256 “E-M Distance
Calculator” modules, which can calculate the distance of input vec-
tors and 16 centroids. The main architecture of “E-M Distance Cal-
culator” module is shown in Fig. 2(a), where the output distance can
be selected to be Euclidean distance or Manhattan distance using the
same hardware resources. When Euclidean distance is selected, the
module computes the square of the difference of the input vector and
the corresponding centroid; when Manhattan distance is selected, the
module simply computes the absolute difference of the input vector
and the corresponding centroid. Note that each “E-M Distance Cal-
culator” computes the distance of only one dimension of vectors and
centroids.

To explain the operation of “E-M Distance Calculator” in differ-
ent modes, an example is shown in the left side of Fig. 2(c), which
is a simple system that only deals with input vectors with dimension
D = 4 and cluster number K = 2. In this example system, there
are only three parallel modes. In the rst mode, these modules deal
with 1-dimensional vectors. In Fig. 2(c), “Data 1” and “Data 2”
both contain the same 1-dimensional input vector; “Centroid 1” and

574

“Centroid 2” contain the 1-dimensional vector of the rst centroid
and the second centroid respectively. A total of eight “E-M distance
calculator” modules are con gured as four parallel processors which
can compute the distance of four 1-dimensional input vectors to their
corresponding centroids simultaneously. In the second mode, these
modules deal with 2-dimensional vectors. In Fig. 2(c), “Data 1” and
“Data 3” both contain the rst dimension of the same 2-dimensional
input vector, and “Data 2” and “Data 4” both contain the second di-
mension of the same 2-dimensional input vector; “Centroid 1” and
“Centroid 2” contain two dimensions of 2-dimensional vector of the
rst centroid, and “Centroid 3” and “Centroid 4” contain the two di-

mensions of the 2-dimensional vector of the second centroid. Eight
“E-M distance calculator” modules are con gured as two parallel
processors which can compute the distance of two 2-dimensional in-
put vectors and their corresponding centroids simultaneously. Sim-
ilarly, in the third mode, eight “E-M distance calculator” modules
are con gured as one processor to compute the distance of one 4-
dimensional input vector and its corresponding centroid. Much more
powerful than this example, the proposed architecture deals with in-
put vectors with dimension D = 16 and cluster number K = 16,
and there are ve parallel modes as shown in Table 1.

3.3. 8-Layer Parallel M-S PE Set

“8-Layer Parallel M-S PE Set” module contains a set of tree-
structured “M-S Processing Element (M-S PE)” modules. For a
L-layer module, the number of “M-S PE” module is 2L − 1, and a
3-layer example is shown in Fig. 2(c), where there are seven “M-S
PE” modules in three layers. The main architecture of “M-S PE”
module is shown in Fig. 2(b), and “M-S” stands for “Minimum”
and “Summation.” This processing element can be con gured to
execute two kinds of operations, “Minimum” or “Summation.” To
explain the functionality of “8-Layer Parallel M-S PE Set” module
in different modes, the example with three parallel modes in Fig.
2(c) is used. In the rst mode, The operation of “M-S PE” in the rst
layer are set to “Minimum,” and four labels, containing the nearest
neighbor information of input vectors, are sent to the output signals.
In the second mode, The operations of “M-S PE” modules in the
rst layer are set to “Summation,” and the operations of “M-S PE”

modules in the second layer are set to “Minimum.” The distances of
two pairs of 2-dimensional vectors are calculated in the rst layer,
and two labels, containing the nearest neighbor information of input
vectors, are sent to the output signals. Similarly, in the third mode,
the distance of a pair of 4-dimensional vectors is calculated in the
rst and the second layer, and nally one label is sent to the output

signal.
Note that “M-S PE” modules in the last layer only has “Mini-

mum” operation in this 3-layer example, and similarly, “M-S PE”
modules in the last three layers only have “Minimum” operation in
the proposed 8-layer architecture. In addition, in order to adjust the
cluster number K, the redundant centroids are set to be inactive in
these “M-S PE” modules, and inactive centroids are not chosen to be
updated in the next stage.

3.4. Summation Updating Engine

The architecture of “Summation Updating Engine” module is illus-
trated in Fig. 3(a), where the input vector stored in “Input Vector
Buffer” module and the label information from “8-Layer Parallel
M-S PE Set” module are sent to “Centroid Selector” module. The
functionality of “Centroid Selector” module is to update the summa-
tion and count of corresponding clusters, which are the numerator

Sum
PE-1

Centroid Selector

Sum
PE-2

Sum
PE-K...Sum

PE-3

Count
PE-1

Count
PE-2

Count
PE-K...Count

PE-3

Parallel to Serial Converter

Parallel to Serial Converter

Label
Data

Sum

Count
(a)

D

Sum-KD

D

Layer3_Data1

Layer1_Data4

Layer1_Data2

Layer1_Data1

Layer2_Data1

Layer1_Data3

Layer2_Data2

Sum_K

Mode

(Layer1) (Layer2) (Layer3)

(b)

Fig. 3. (a) The architecture of “Summation Updating Engine” mod-
ule. (b) The architecture of “Sum Processing Element (Sum PE)”
module in “Summation Updating Engine” module.

and the denominator in (3) respectively. It distributes the updating
information of each centroid to its corresponding unit according to
different parallel modes. Modules which receive the updating infor-
mation are “Sum Processing Element (Sum PE)” module and “Count
Processing Element (Count PE)” module. Each centroid has one 16
“Sum PE” modules and one “Count PE” module. These two mod-
ules have similar architectures, and the architecture of “Sum PE” is
shown in Fig. 3(b). Again, this is an example of the 3-layer system.
The output data of different layers is connected to different stages
in this module, and at most four input vectors can be added together
when the dimension number is equivalent to one. The summation
and count of each centroid are stored in a local buffer and connected
to “Parallel to Serial Converter” module until “Vector Divider” mod-
ule in the next stage requires data to perform divisions in (3).

3.5. Vector Divider

“Vector Divider” module contains 16 non-restoring bit-serial di-
viders, which are able to compute a division of a 16 dimensional
vector in 10 cycles. The number of total cycles to compute new
centroids depends on the number of cluster K. For instance, it takes
100 cycles to compute 10 cluster centroids of 16 dimensions when
K = 10. Then new centroids are stored to “Centroid Maintainer”
module for the next iteration. Moreover, a inspection mechanism is
proposed to handle the situation when a centroid has no input vectors
to be updated. To realize this mechanism, a comparator is integrated
with “Vector Divider” module to check if the divisor is zero. When
the divisor becomes zero, the output of “Vector Divider” is assigned
to be the cluster centroid in the previous iteration. It stables the
clustering procedure by eliminating the possibility of division by
zero.

3.6. Convergence Monitor and Labeling Engine

“Convergence Monitor” module examines whether the iteration is
nished according to (4) and returns the information to the “Control

Unit” module. When the iteration is nished, the input vectors are

575

Fig. 4. The area (mm2) and the percentage of each module of the
proposed K-Means hardware.

fed to the hardware again to obtain the nearest neighbor of each input
vector. The functionality of “Labeling Engine” module is to output
the label or the vector of the nearest centroid of each input vector,
and the latency and the maximum throughput of output data is 10
cycles and 128 bits/cycle respectively.

4. EXPERIMENTAL RESULTS

The experiments contain two parts. The rst part is the architectural
analysis. In this part, the critical path and hardware costs of each
module in the proposed K-Means architecture are analyzed using
Synopsys DesignVision with TSMC 90nm technology library. The
maximum clock frequency is 400MHz, the total gate count is 440K,
and the corresponding area is 1.23mm2. The area of each module is
shown in Fig. 4, where computationally intensive processing units,
such as “Parallel E-M Distance Calculator Set” module, “8-Layer
Parallel M-S PE Set” module, and “Summation Updating Engine”
module, occupy most of the area.

The second part is the comparison of hardware speci cations.
This work is compared to the previous work [9], and the results are
summarized in Table 2. The proposed work supports higher dimen-
sions of input vectors, achieves higher throughput, and has ability
to handle more data number than the previous work. Since the pro-
posed work uses TSMC 90nm technology, the area containing al-
most eight times of gate count of the previous work is less than three
times of the area of the previous work. Moreover, the proposed work
has ve parallel modes for bandwidth adaptive mechanism to handle
vectors with different dimensions ef ciently. When the dimension
number is equal to one, the processing speed of this work is 64 times
faster than the previous work. In terms of the algorithms issue, the
proposed work supports both Euclidean distance and Manhattan dis-
tance, applies random initialization approach, and includes the in-
spection mechanism which is able to stable the clustering process.

5. CONCLUSIONS AND FUTURE WORK

K-Means is an important clustering algorithm in the eld of pat-
tern recognition and data mining. To make this algorithm feasible
for multimedia applications in real-time embedded systems, a band-
width adaptive scheme for K-Means hardware is proposed. The ar-
chitecture enables ve parallel modes for different dimension num-
bers of feature vectors by con guring the processing elements. For
future developments, modules for complicated distance measure-
ment will be integrated with the existing architecture to construct
a robust K-Means clustering engine.

Table 2. Comparison of This Work and The Previous Work
ISCAS 2008 [9] This Work

Technology TSMC 0.18μm TSMC 90nm
Clock Frequency 200MHz 400MHz
Gate Count 58K 440K
Area 0.58mm2 1.23mm2

Number of K 1 – 16 1 – 16
Vector Dimension 1 – 5 1 – 16
Parallel Mode 1 Fixed Mode 5 Modes
Throughput 2.5 Dimensions/cycle 16 Dimensions/cycle
Initialization Method Prede ned Centroid Forgy [3]
Distance Measurement Manhattan Euclidean/Manhattan
Maximum Data Number 217 220

6. REFERENCES

[1] T.-W. Chen, S.-C. Hsu, and S.-Y. Chien, “Robust video object
segmentation based on K-Means background clustering and wa-
tershed in ill-conditioned surveillance systems,” in Proceedings
of IEEE International Conference on Multimedia and Expo, July
2007, pp. 787–790.

[2] T.-W. Chen, Y.-L. Chen, and S.-Y. Chien, “Fast image segmenta-
tion based on K-Means clustering with histograms in HSV color
space,” in Proceedings of IEEE International Workshop on Mul-
timedia Signal Processing, Oct. 2008, pp. 322–325.

[3] J. M. Pena, J. A. Lozano, and P. Larranaga, “An empirical com-
parison of four initialization methods for the K-Means algo-
rithm,” Pattern Recognition Letters, vol. 20, no. 10, pp. 1027–
1040, 1999.

[4] T. Kanungo, D. Mount, N. Netanyahu, C. Piatko, R. Silverman,
and A. Wu, “An ef cient K-Means clustering algorithm: analy-
sis and implementation,” IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, vol. 24, no. 7, pp. 881–892, July
2002.

[5] M. Estlick, M. Leeser, J. Theiler, and J. J. Szymanski, “Al-
gorithmic transformations in the implementation of K-Means
clustering on recon gurable hardware,” in Proceedings of the
2001 ACM/SIGDA ninth international symposium on Field pro-
grammable gate arrays, 2001, pp. 103–110.

[6] T. Maruyama, “Real-time K-Means clustering for color images
on recon gurable hardware,” in Proceedings of International
Conference on Pattern Recognition, 2006, pp. 816–819.

[7] T. Saegusa and T. Maruyama, “An FPGA implementation of K-
Means clustering for color images based on KD-Tree,” in Pro-
ceedings of International Conference on Field Programmable
Logic and Applications, Aug 2006, pp. 1–6.

[8] A. G. S. Filho, A. Frery, C. de Araujo, H. Alice, J. Cerqueira,
J. Loureiro, M. de Lima, M. Oliveira, and M. Horta, “Hyper-
spectral images clustering on recon gurable hardware using the
K-Means algorithm,” in Proceedings 16th Symposium on Inte-
grated Circuits and Systems Design, Sep 2003, pp. 99–104.

[9] T.-W. Chen, C.-H. Sun, J.-Y. Bai, H.-R. Chen, and S.-Y. Chien,
“Architectural analyses of K-Means silicon intellectual property
for image segmentation,” in Proceedings of IEEE International
Symposium on Circuits and Systems, May 2008, pp. 2578–2581.

576

