
VLSI FOR 5000-WORD CONTINUOUS SPEECH RECOGNITION

Young-kyu Choi
LG Electronics

ykchoi@dsp.snu.ac.kr

 Kisun You, Jungwook Choi, and Wonyong Sung
School of Electrical Engineering, Seoul National University

{ksyou,jwchoi}@dsp.snu.ac.kr, wysung@snu.ac.kr

ABSTRACT

We have developed a VLSI chip for 5,000 word speaker-
independent continuous speech recognition. This chip em-
ploys a context-dependent HMM (hidden Markov model)
based speech recognition algorithm, and contains emission
probability and Viterbi beam search pipelined hardware
units. The feature vector for speech recognition is com-
puted using a host processor in software in order to adopt
various enhancement algorithms. The amount of internal
SRAM size is minimized by moving data out to the external
DRAM, and a custom DRAM controller module is designed
to efficiently read and write consecutive data. The experi-
mental result shows that the implemented system has a real-
time factor of 0.77 and 0.55 using SDRAM and DDR
SDRAM, respectively.

Index Terms — speech recognition, very-large-scale
integration, LVCSR

1. INTRODUCTION

A VLSI chip for large vocabulary continuous speech recog-
nition (LVCSR) can find many applications, but the imple-
mentation has not been possible because this task requires
much computation and data access. Most of the current
LVCSR systems use high-end personal computers, which
are not only expensive but also consume much power. By
taking a hardware-based approach, we can perform speech
recognition with less power and smaller chip area when
compared to the software-based approach.

There have been several hardware-based speech recog-
nizers. However, some of them have been only partially
implemented in hardware [1][2], and some others are not
adequate for large vocabulary continuous speech recogni-
tion system [3]. The FPGA-based systems depicted in [4]
and [5] can perform complete speech recognition, however
they are less efficient than VLSI chip based implementa-
tions in terms of power, area, and performance.

This paper describes a 5000 word continuous speech re-
cognizer implemented on a VLSI chip. We have employed
fine-grain pipelined architecture and memory bandwidth
optimization techniques to maximize the performance with a
minimum chip size. Moreover, we have developed a custom
DRAM controller to efficiently read and write consecutive
stream of data, which contributes much for reducing the

internal SRAM size. Also, we have analyzed the tradeoff
between the required SRAM and the performance.

This paper is organized as follows. The speech recogni-
tion algorithm used in this implementation is explained in
Section 2. Section 3 describes the architecture of the imple-
mented system. In Section 4, the memory usage is analyzed
to show the trade-off between the SRAM size and the per-
formance. Section 5 shows the experimental results, and
concluding remarks are made in Section 6.

2. SPEECH RECOGNITION SYSTEM OVERVIEW

This chip employs a context-dependent HMM-based conti-
nuous speech recognition algorithm, which is the most
widely used one for LVCSR [6]. The recognizer consists of
three functional blocks: feature extraction, emission proba-
bility computation, and Viterbi beam search.

The recognizer computes 39-dimensional MFCC (Mel-
Frequency Cepstral Coefficient) from 30ms length of input
speech waveform at every 10ms.

With the obtained MFCC feature vector, the emission
probability, which represents the probability of the feature
vector being generated from the corresponding HMM state,
is computed. We utilize the emission probability that is ap-
proximated by the maximum Gaussian probability [7]:

})(
2
1{max));(log(

1
2

2K

k mk

mkk
m

m
t

x
CsOb , (1)

where K is the feature dimension, mC is a Gaussian con-
stant, and mk and mk are means and standard deviation of
the Gaussian. Since many HMM states need to be com-
pared, this needs not only many multiplications and addi-
tions, but also much memory access.

In the Viterbi beam search, the best state sequence up to
the current frame is sought based on the emission probabili-
ty of all the active HMM states. The time synchronous Vi-
terbi beam search [8] is employed, which can be divided
into two parts: one for the intra-word transition and the oth-
er for the inter-word transition.

The dynamic programming (DP) recursion for the intra-
word transitions is conducted as follows:

)),,;(log()}log();({max);(1 wsObawsws jtijitijt (2)

where ija is the transition probability from the state i to j ,
and)),;(log(wsOb jt is the emission probability for the state

557978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009

j of the word w in the time frame t.);(ws jt is the ac-
cumulated likelihood of the most likely state sequence
reaching the state j of the word w at time t . During the
dynamic programming, any state that has a smaller accumu-
lated likelihood value than the threshold is discarded by the
beam pruning.

The inter-word transition is performed based on Eq. (3),
where the accumulated likelihood of the last state of each
word is propagated to other words. The bigram language
model gives the constraint to the inter-word transition.

)};())|({log(max);(0 vsvwpws ftvt , (3)

where)|(vwp is the bigram language model probability
from word v to word w , fs indicates the final state, and

0s is the pseudo initial state.
After detecting silence, backtracking is performed to ob-

tain the best state sequence, which shows a recognized
speech sentence.

3. ARCHITECTURE

3.1. Overall Architecture

As shown in Fig. 1, the system consists of a host processor,
the speech recognition chip, and an external DRAM.

For the host processor, the Colibri XScale PXA270
module is used, which contains the Intel PXA270 processor
running at 520 MHz, 64MB of SDRAM, and an audio I/O
[9]. The host processor performs feature extraction in soft-
ware. Note that the feature extraction does not demand
much computation when compared to emission probability
or Viterbi beam search modules. However, this part is im-
portant because speech recognition accuracy can be in-
creased significantly by employing noise cancelling, speak-
er adaptation, or beam-forming algorithms.

Emission
Probability

Computation

Dynamic
Programming

State
Beam

Pruning

Inter-word
Transition

Language
Model

Pruning
Data

Storage

Write
Buffer

DRAM
Controller

Acoustic
Model Data

HMM States
Parameters

Updated HMM
States

Parameters

Word Data

Inter-word
Transition Data

Burst
Controller

Updated Word
Data

Feature Data
PXA270

Active Acoustic
Model List

Emission Prob.

Emission Prob.

Speech Recognition Chip
Figure 1. Overall speech recognition system architecture

As for the external DRAM, either Synchronous DRAM
(SDRAM) or Double Data Rate (DDR) SDRAM can be

used. The data bit-width is 16, the data capacity is 64MB,
and the DRAM clock is 133MHz.

The implemented speech recognition chip is composed
of four parts: emission probability computation, dynamic
programming & beam pruning, language model pruning &
inter-word transition, and a DRAM controller. The re-
mainder of this section describes each part in detail.

3.2. Emission Probability Computation Unit

This unit calculates the likelihood));(log(sOb t of the HMM
state by comparing the Gaussian parameters with the feature
data.

To reduce the DRAM memory bandwidth required for
reading the feature data, the emission probability of four
speech frames is computed at a time [5]. Because of the
correlation in adjacent speech frames, the Gaussian parame-
ters to be loaded for the neighboring four frames overlap
very much. This technique, however, introduces a small
delay of 40 msec. At the end of every four frames, the emis-
sion probability for four frames is computed at a time, and
the result is stored in the SRAM along with a list of loaded
Gaussian parameters. For the correctness, the emission
probability for the newly activated HMM states in the mid-
dle of four frames is computed instantly. After the optimiza-
tion, we reduced 66.8% of DRAM access without losing
any recognition accuracy. Additional SRAM of 23.4KB is
needed to store the emission probability.

3.3. Dynamic Programming & Beam Pruning Unit

Dynamic programming recursion shown in Eq. (2) is per-
formed to evaluate the accumulated likelihood of HMM
states. Since the data structure representing the HMM states
requires 699KB of memory, it needs to be stored in the ex-
ternal DRAM. In order to mitigate the effect of increased
latency for accessing external DRAM, fine-grain pipelined
architecture is adopted [5]. The architecture can process one
HMM state every clock cycle by pipelining, and the compu-
tation time overlaps with the data access time.

In the first stage of the pipeline, the likelihood value of
the current state is compared with that of the previous state.
The higher likelihood between the two is selected and stored
in a buffer for the next cycle. Also, the request signal for the
emission probability that corresponds to the current HMM
state is sent to the SRAM in this stage.

In the second stage, the emission probability requested in
the first stage becomes available, and it is added to the
stored likelihood from the previous stage. Then, this accu-
mulated value is pruned away if it is smaller than the acous-
tic beam threshold value.

In the third stage, the updated likelihood from the second
stage is written to the DRAM write buffer. The data in the
write buffer are written to the DRAM in a burst mode when
the write buffer becomes full. Also, the state status is up-

558

dated in this stage. If the accumulated likelihood in the
second stage is bigger than the beam threshold, it stays ac-
tive, otherwise it becomes inactive.

3.4. Language Model Pruning & Inter-word Transition

After updating all the HMM states, the inter-word transition
is processed. This unit also adopts the pipelined architecture
to hide DRAM access latency [5]. The language model
probability and the next word address are read from the
DRAM.

In the first stage, the language model probability is added
to the likelihood of the last state. Then the result is com-
pared with the language model threshold. If it is bigger than
the threshold, the likelihood value of the first state of the
next word is requested from the SRAM. Also, the transition
probability is stored in a buffer for the second stage.

In the second stage, the likelihood value of the first state
of the next word becomes available. This value is compared
with the inter-word transition probability from the first stage.
If the value is smaller than the incoming transition probabil-
ity, the SRAM is updated with the incoming value.

To reduce the memory bandwidth of the inter-word tran-
sition, two-stage language model pruning is used [5]. In the
first stage, the best transition language model probability is
compared with the language model pruning threshold. If the
best transition probability does not exceed the threshold
value, it means that the rest of transition probability would
not exceed it, either. Therefore, the rest of the language
model probability and its corresponding next node address
are not fetched from the DRAM. If the best transition prob-
ability is bigger than the threshold value, the transition
probability is read from the DRAM and compared with the
pruning threshold in the second stage. This technique re-
duces the DRAM bandwidth of inter-word transition part by
46.0%.

3.5. DRAM Controller

Since the performance of the speech recognizer heavily de-
pends on the memory access time of external DRAM, we
increased the memory bandwidth by designing a custom
memory controller that supports up to 32 burst memory
access. Since DRAM only support burst access of length 8,
we issued 4 DRAM access request consecutively without
closing the opened row of a bank. This scheme reduces the
delay between the memory requests, because we need to
open and close a row only once during the burst access op-
eration.

Note that the data must reside in the same row to imple-
ment this policy. In order to insure that the recognizer re-
quests data that is placed in the same row as much as possi-
ble, we stored all DRAM data in a consecutive manner.

4. MEMORY USAGE

Although the internal SRAM provides high performance, it
consumes much chip area. Therefore, we analyze the tra-
deoff between the area and the performance by moving
some data out to the external DRAM. In order to implement
the pipelined architecture explained in Section 3, the data
described in Table I must be stored in the internal SRAM.

The data not listed in Table I can be moved to the
DRAM for saving the chip area. Table II describes the
trade-off between the performance and the internal SRAM
size. The performance is measured using the DDR SDRAM.
The result shows that storing only the minimum amount of
required data in the SRAM reduces the performance by
6.8% (0.517RT -> 0.552RT), while lowering the SRAM
usage by 59.6% (149KB -> 60.2KB). In order to reduce the
area, we have chosen to use the minimum amount of SRAM
in the final implementation.

Table I. SRAM usage

Description

Size
(KB)

Single
/Dual
port

List of active Gaussian parameters 0.73 Dual
Emission probability storage 23.4 Single
List of active words 0.61 Dual
Accumulated likelihood of active words 9.77 Dual
Back-trace info. storage (time) 9.77 Single
Back-trace info. storage (prev word name) 9.77 Single
List of words that perform inter-word trans 1.22 Dual
Likelihood values to the back-off node 4.88 Single

Total 60.2

Table II. Tradeoff between performance & SRAM size

Data moved to DRAM Size(KB) Real Time Factor
(None) 149 0.517
Dyn. Prog. Only 100 0.545
Inter-word Trans. Only 109 0.525
Dyn.Prog.+Inter-word Trans 60.2 0.552

5. EXPERIMENTAL RESULTS

5.1. Experimental Setup

The acoustic model of the recognition system was trained
by HTK, an open-source speech recognition toolkit [10].
The speaker independent training data in Wall Street Jour-
nal 1 corpus is used. The acoustic model data consists of
3,000 shared HMM states. Each state has a mixture of 16
Gaussian distributions. For the evaluation of the system, we
used the Wall Street Journal 5k-word continuous speech
recognition task. The test set consists of 330 sentences spo-
ken by several speakers. The language weight is set to 16.0

559

and the word error rate of the implemented system is 9.36%.
No special preprocessing algorithm is used.

5.2. Execution Time

For execution time measurement, we have constructed the
cycle-accurate models of the SRAM, the external DRAM,
and the processor. Table III shows the performance compar-
ison between the developed system with two DRAM ver-
sions and the FPGA based implementation result in [5].
Note that the developed system employs a 16bit wide
133MHz SDRAM or DDR SDRAM while the FPGA based
system in [5] uses a 32bit wide 100MHz DDR SDRAM.

The comparison result shows that the developed
SDRAM version is 1.17 times slower than [5], and the DDR
SDRAM version is 1.20 times faster than [5] in terms of the
execution speed. This is due to several reasons. First, we
should consider that the FPGA based system in [5] uses a
32bit wide 100MHz DDR SDRAM and thus has approx-
imately 3 times and 1.5 (=2.0/1.3) times more memory
bandwidth than the SDRAM and DDR SDRAM versions,
respectively. Second, by minimizing the SRAM usage, there
was a performance degradation of 6.6% and 6.8%, respec-
tively. The FPGA based system in [5] consumes the internal
memory size of approximately 274 KB. The improved per-
formance is mainly due to the new DRAM controller that
supports the open-row policy.

Table III. Comparison of execution time

 FPGA[5]
(Mcycles/s)

SDRAM
(Mcycles/s)

DDR
(Mcycles/s)

Emission Prob. 26.9 45.2 31.1
Dynamic Prog. 30.0 40.8 31.0
Interword Trans 9.1 16.4 11.4

Total 66.0 102.4 73.5
Real Time Fac. 0.66 0.77 0.55

Table IV Area estimation after synthesis
 SDRAM(m2) DDR(m2)
Area of Comb. Logic 1,287,213 1,686,295
Area of Non-Comb. Logic 6,772,583 7,099,528
Total Cell Area 8,059,796 8,785,823

5.3. Area Estimation

Synopsys design compiler A-2007.12-SP5 with the Char-
tered 0.18 m process was used to synthesize the design.
Table IV shows the area estimation after synthesis. The area
of the DDR version is 9% larger than that of the SDRAM
version. After the logic synthesis, placement & routing was
performed using Synopsys Astro tool.

6. CONCLUDING REMARKS

We have implemented a VLSI chip for 5000 word conti-
nuous speech recognition. We try to reduce the internal
SRAM memory size, and hide the latency of external
DRAM memory access by employing fine-grain pipelined
architecture and a custom DRAM controller. Two hardware
versions, one uses a 16bit SDRAM and the other employs a
16bit DDR SDRAM, have been developed, and achieve the
execution speed of 1.30 (with SDRAM) and 1.82 (with
DDR SDRAM) times faster than real-time.

7. ACKNOWLEDGEMENTS

This work was supported in part by the Brain Korea 21
Project and ETRI SoC Industry Promotion Center Human
Resource Development Project for IT SoC Architect.

8. REFERENCES

[1] U. Pazhayaveetil, D. Chandra, and P. Franzon, “Flexible
low power probability density estimation unit for speech
recognition,” IEEE Int. Symp. on Circuits and Systems
(ISCAS), pp. 1117–1120, 2007.
[2] B.Mathew, A. Davis, and Z. Fang, “A low-power acce-
lerator for the SPHINX 3 speech recognition system,” Int.
Conf. on Compilers, Architecture and Synthesis for Embed-
ded Systems (CASES), pp. 210–219, 2003.
[3] S. Nedevschi, R. Patra, and E. Brewer, “Hardware
speech recognition for user interfaces in low cost, low pow-
er devices,” 42nd Annual Conf. on Design Automation
(DAC), pp. 684–689, 2005.
[4] E. Lin, Y. Kai, R. Rutenbar, and T. Chen, “A 1000-word
vocabulary, speaker independent, continuous live-mode
speech recognizer implemented in a single FPGA,”
ACM/SIGDA 15th Int. Symp. on FPGA, pp. 60–68, 2007.
[5] Y. Choi, K. You, and W. Sung, “FPGA-based imple-
mentation of a real-time 5000-word continuous speech re-
cognizer,” 16th European Signal Processing Conf., 2008.
[6] X. Huang, A. Acero, and H.W. Hon, Spoken Language
Processing - A Guide to Theory, Algorithm, and System
Development. Prentice Hall PTR, New Jersey, 2001.
[7] B. Pellom, R. Sarikaya, and J. Hansen, “Fast likelihood
computation techniques in nearest-neighbor based search
for continuous speech recognition,” IEEE Signal Processing
Letters, vol. 8, no. 8, pp. 221–224, August 2001.
[8] H. Ney and S. Ortmanns, “Dynamic programming
search for continuous speech recognition,” IEEE Signal
Processing Magazine, pp. 64–83, 1999.
[9] Toradex, Colibri XScale PXA270 Datasheet,
http://www.toradex.com, 2006.
[10] S. Young, G. Evermann, D. Kershaw, G. Moore, J.
Odell, D. Ollason, V. Valtchev, and P.Woodland, The HTK
Book Version 3.3, 2005.

560

