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ABSTRACT 
 
We have developed a VLSI chip for 5,000 word speaker-
independent continuous speech recognition. This chip em-
ploys a context-dependent HMM (hidden Markov model) 
based speech recognition algorithm, and contains emission 
probability and Viterbi beam search pipelined hardware 
units.  The feature vector for speech recognition is com-
puted using a host processor in software in order to adopt 
various enhancement algorithms. The amount of internal 
SRAM size is minimized by moving data out to the external 
DRAM, and a custom DRAM controller module is designed 
to efficiently read and write consecutive data. The experi-
mental result shows that the implemented system has a real-
time factor of 0.77 and 0.55 using SDRAM and DDR 
SDRAM, respectively. 

Index Terms — speech recognition, very-large-scale 
integration, LVCSR 

 
1. INTRODUCTION 

 
A VLSI chip for large vocabulary continuous speech recog-
nition (LVCSR) can find many applications, but the imple-
mentation has not been possible because this task requires 
much computation and data access.  Most of the current 
LVCSR systems use high-end personal computers, which 
are not only expensive but also consume much power.  By 
taking a hardware-based approach, we can perform speech 
recognition with less power and smaller chip area when 
compared to the software-based approach.  

There have been several hardware-based speech recog-
nizers. However, some of them have been only partially 
implemented in hardware [1][2], and some others are not 
adequate for large vocabulary continuous speech recogni-
tion system [3]. The FPGA-based systems depicted in [4] 
and [5] can perform complete speech recognition, however 
they are less efficient than VLSI chip based implementa-
tions in terms of power, area, and performance. 

This paper describes a 5000 word continuous speech re-
cognizer implemented on a VLSI chip. We have employed 
fine-grain pipelined architecture and memory bandwidth 
optimization techniques to maximize the performance with a 
minimum chip size. Moreover, we have developed a custom 
DRAM controller to efficiently read and write consecutive 
stream of data, which contributes much for reducing the 

internal SRAM size. Also, we have analyzed the tradeoff 
between the required SRAM and the performance. 

This paper is organized as follows. The speech recogni-
tion algorithm used in this implementation is explained in 
Section 2. Section 3 describes the architecture of the imple-
mented system. In Section 4, the memory usage is analyzed 
to show the trade-off between the SRAM size and the per-
formance. Section 5 shows the experimental results, and 
concluding remarks are made in Section 6. 
 

2. SPEECH RECOGNITION SYSTEM OVERVIEW 
 
This chip employs a context-dependent HMM-based conti-
nuous speech recognition algorithm, which is the most 
widely used one for LVCSR [6]. The recognizer consists of 
three functional blocks: feature extraction, emission proba-
bility computation, and Viterbi beam search.  

The recognizer computes 39-dimensional MFCC (Mel-
Frequency Cepstral Coefficient) from 30ms length of input 
speech waveform at every 10ms. 

With the obtained MFCC feature vector, the emission 
probability, which represents the probability of the feature 
vector being generated from the corresponding HMM state, 
is computed. We utilize the emission probability that is ap-
proximated by the maximum Gaussian probability [7]: 
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where K  is the feature dimension, mC  is a Gaussian con-
stant, and mk and mk  are means and standard deviation of 
the Gaussian.  Since many HMM states need to be com-
pared, this needs not only many multiplications and addi-
tions, but also much memory access.  

In the Viterbi beam search, the best state sequence up to 
the current frame is sought based on the emission probabili-
ty of all the active HMM states. The time synchronous Vi-
terbi beam search [8] is employed, which can be divided 
into two parts: one for the intra-word transition and the oth-
er for the inter-word transition. 

The dynamic programming (DP) recursion for the intra-
word transitions is conducted as follows: 
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where ija  is the transition probability from the state i  to j , 
and )),;(log( wsOb jt is the emission probability for the state 
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j  of the word w  in the time frame t. );( ws jt  is the ac-
cumulated likelihood of the most likely state sequence 
reaching the state j  of the word w  at time t . During the 
dynamic programming, any state that has a smaller accumu-
lated likelihood value than the threshold is discarded by the 
beam pruning. 

The inter-word transition is performed based on Eq. (3), 
where the accumulated likelihood of the last state of each 
word is propagated to other words. The bigram language 
model gives the constraint to the inter-word transition.  

)};())|({log(max);( 0 vsvwpws ftvt , (3) 

where )|( vwp is the bigram language model probability 
from word v  to word w , fs  indicates the final state, and 

0s  is the pseudo initial state. 
After detecting silence, backtracking is performed to ob-

tain the best state sequence, which shows a recognized 
speech sentence. 
 

3. ARCHITECTURE 
 
3.1. Overall Architecture 
 
As shown in Fig. 1, the system consists of a host processor, 
the speech recognition chip, and an external DRAM.  

For the host processor, the Colibri XScale PXA270 
module is used, which contains the Intel PXA270 processor 
running at 520 MHz, 64MB of SDRAM, and an audio I/O 
[9]. The host processor performs feature extraction in soft-
ware.  Note that the feature extraction does not demand 
much computation when compared to emission probability 
or Viterbi beam search modules.  However, this part is im-
portant because speech recognition accuracy can be in-
creased significantly by employing noise cancelling, speak-
er adaptation, or beam-forming algorithms.  
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Figure 1. Overall speech recognition system architecture 
 

As for the external DRAM, either Synchronous DRAM 
(SDRAM) or Double Data Rate (DDR) SDRAM can be 

used. The data bit-width is 16, the data capacity is 64MB, 
and the DRAM clock is 133MHz.  

The implemented speech recognition chip is composed 
of four parts: emission probability computation, dynamic 
programming & beam pruning, language model pruning & 
inter-word transition, and a DRAM controller. The re-
mainder of this section describes each part in detail. 
 
3.2. Emission Probability Computation Unit 
 
This unit calculates the likelihood ));(log( sOb t of the HMM 
state by comparing the Gaussian parameters with the feature 
data. 

To reduce the DRAM memory bandwidth required for 
reading the feature data, the emission probability of four 
speech frames is computed at a time [5].  Because of the 
correlation in adjacent speech frames, the Gaussian parame-
ters to be loaded for the neighboring four frames overlap 
very much. This technique, however, introduces a small 
delay of 40 msec. At the end of every four frames, the emis-
sion probability for four frames is computed at a time, and 
the result is stored in the SRAM along with a list of loaded 
Gaussian parameters. For the correctness, the emission 
probability for the newly activated HMM states in the mid-
dle of four frames is computed instantly. After the optimiza-
tion, we reduced 66.8% of DRAM access without losing 
any recognition accuracy. Additional SRAM of 23.4KB is 
needed to store the emission probability. 

 
3.3. Dynamic Programming & Beam Pruning Unit 
 
Dynamic programming recursion shown in Eq. (2) is per-
formed to evaluate the accumulated likelihood of HMM 
states. Since the data structure representing the HMM states 
requires 699KB of memory, it needs to be stored in the ex-
ternal DRAM. In order to mitigate the effect of increased 
latency for accessing external DRAM, fine-grain pipelined 
architecture is adopted [5]. The architecture can process one 
HMM state every clock cycle by pipelining, and the compu-
tation time overlaps with the data access time.  

In the first stage of the pipeline, the likelihood value of 
the current state is compared with that of the previous state. 
The higher likelihood between the two is selected and stored 
in a buffer for the next cycle. Also, the request signal for the 
emission probability that corresponds to the current HMM 
state is sent to the SRAM in this stage. 

In the second stage, the emission probability requested in 
the first stage becomes available, and it is added to the 
stored likelihood from the previous stage. Then, this accu-
mulated value is pruned away if it is smaller than the acous-
tic beam threshold value.  

In the third stage, the updated likelihood from the second 
stage is written to the DRAM write buffer. The data in the 
write buffer are written to the DRAM in a burst mode when 
the write buffer becomes full. Also, the state status is up-
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dated in this stage. If the accumulated likelihood in the 
second stage is bigger than the beam threshold, it stays ac-
tive, otherwise it becomes inactive.  
 
3.4. Language Model Pruning & Inter-word Transition 
 
After updating all the HMM states, the inter-word transition 
is processed. This unit also adopts the pipelined architecture 
to hide DRAM access latency [5]. The language model 
probability and the next word address are read from the 
DRAM.  

In the first stage, the language model probability is added 
to the likelihood of the last state. Then the result is com-
pared with the language model threshold. If it is bigger than 
the threshold, the likelihood value of the first state of the 
next word is requested from the SRAM. Also, the transition 
probability is stored in a buffer for the second stage. 

In the second stage, the likelihood value of the first state 
of the next word becomes available. This value is compared 
with the inter-word transition probability from the first stage. 
If the value is smaller than the incoming transition probabil-
ity, the SRAM is updated with the incoming value. 

To reduce the memory bandwidth of the inter-word tran-
sition, two-stage language model pruning is used [5]. In the 
first stage, the best transition language model probability is 
compared with the language model pruning threshold. If the 
best transition probability does not exceed the threshold 
value, it means that the rest of transition probability would 
not exceed it, either. Therefore, the rest of the language 
model probability and its corresponding next node address 
are not fetched from the DRAM. If the best transition prob-
ability is bigger than the threshold value, the transition 
probability is read from the DRAM and compared with the 
pruning threshold in the second stage. This technique re-
duces the DRAM bandwidth of inter-word transition part by 
46.0%. 
 
3.5. DRAM Controller 
 
Since the performance of the speech recognizer heavily de-
pends on the memory access time of external DRAM, we 
increased the memory bandwidth by designing a custom 
memory controller that supports up to 32 burst memory 
access. Since DRAM only support burst access of length 8, 
we issued 4 DRAM access request consecutively without 
closing the opened row of a bank. This scheme reduces the 
delay between the memory requests, because we need to 
open and close a row only once during the burst access op-
eration.  

Note that the data must reside in the same row to imple-
ment this policy. In order to insure that the recognizer re-
quests data that is placed in the same row as much as possi-
ble, we stored all DRAM data in a consecutive manner. 
 
 

 
4. MEMORY USAGE 

 
Although the internal SRAM provides high performance, it 
consumes much chip area. Therefore, we analyze the tra-
deoff between the area and the performance by moving 
some data out to the external DRAM. In order to implement 
the pipelined architecture explained in Section 3, the data 
described in Table I must be stored in the internal SRAM. 

The data not listed in Table I can be moved to the 
DRAM for saving the chip area. Table II describes the 
trade-off between the performance and the internal SRAM 
size. The performance is measured using the DDR SDRAM. 
The result shows that storing only the minimum amount of 
required data in the SRAM reduces the performance by 
6.8% (0.517RT -> 0.552RT), while lowering the SRAM 
usage by 59.6% (149KB -> 60.2KB). In order to reduce the 
area, we have chosen to use the minimum amount of SRAM 
in the final implementation. 
 

Table I. SRAM usage 
 
Description 

Size 
(KB) 

Single 
/Dual  
port 

List of active Gaussian parameters 0.73 Dual 
Emission probability storage 23.4 Single 
List of active words 0.61 Dual 
Accumulated likelihood of active words 9.77 Dual 
Back-trace info. storage (time) 9.77 Single 
Back-trace info. storage (prev word name) 9.77 Single 
List of words that perform inter-word trans 1.22 Dual 
Likelihood values to the back-off node 4.88 Single 

Total 60.2  
 
Table II. Tradeoff between performance & SRAM size 

Data moved to DRAM Size(KB) Real Time Factor 
(None) 149 0.517 
Dyn. Prog. Only 100 0.545 
Inter-word Trans. Only 109 0.525 
Dyn.Prog.+Inter-word Trans 60.2 0.552 
 

5. EXPERIMENTAL RESULTS 
 
5.1. Experimental Setup 
 
The acoustic model of the recognition system was trained 
by HTK, an open-source speech recognition toolkit [10]. 
The speaker independent training data in Wall Street Jour-
nal 1 corpus is used. The acoustic model data consists of 
3,000 shared HMM states. Each state has a mixture of 16 
Gaussian distributions. For the evaluation of the system, we 
used the Wall Street Journal 5k-word continuous speech 
recognition task. The test set consists of 330 sentences spo-
ken by several speakers. The language weight is set to 16.0 
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and the word error rate of the implemented system is 9.36%.  
No special preprocessing algorithm is used.  
 
5.2. Execution Time 
 
For execution time measurement, we have constructed the 
cycle-accurate models of the SRAM, the external DRAM, 
and the processor. Table III shows the performance compar-
ison between the developed system with two DRAM ver-
sions and the FPGA based implementation result in [5].  
Note that the developed system employs a 16bit wide 
133MHz SDRAM or DDR SDRAM while the FPGA based 
system in [5] uses a 32bit wide 100MHz DDR SDRAM.  

The comparison result shows that the developed 
SDRAM version is 1.17 times slower than [5], and the DDR 
SDRAM version is 1.20 times faster than [5] in terms of the 
execution speed. This is due to several reasons. First, we 
should consider that the FPGA based system in [5] uses a 
32bit wide 100MHz DDR SDRAM and thus has approx-
imately 3 times and 1.5 (=2.0/1.3) times more memory 
bandwidth than the SDRAM and DDR SDRAM versions, 
respectively. Second, by minimizing the SRAM usage, there 
was a performance degradation of 6.6% and 6.8%, respec-
tively. The FPGA based system in [5] consumes the internal 
memory size of approximately 274 KB. The improved per-
formance is mainly due to the new DRAM controller that 
supports the open-row policy. 

 
Table III. Comparison of execution time 

 FPGA[5] 
(Mcycles/s) 

SDRAM 
(Mcycles/s) 

DDR 
(Mcycles/s) 

Emission Prob. 26.9 45.2 31.1 
Dynamic Prog. 30.0 40.8 31.0 
Interword Trans 9.1 16.4 11.4 

Total 66.0 102.4 73.5 
Real Time Fac. 0.66 0.77 0.55 
 

Table IV Area estimation after synthesis 
 SDRAM( m2) DDR( m2) 
Area of Comb. Logic 1,287,213 1,686,295 
Area of Non-Comb. Logic 6,772,583 7,099,528 
Total Cell Area 8,059,796 8,785,823 
 
5.3. Area Estimation 
 
Synopsys design compiler A-2007.12-SP5 with the Char-
tered 0.18 m process was used to synthesize the design. 
Table IV shows the area estimation after synthesis. The area 
of the DDR version is 9% larger than that of the SDRAM 
version.  After the logic synthesis, placement & routing was 
performed using Synopsys Astro tool.  
 
 

6. CONCLUDING REMARKS 
 
We have implemented a VLSI chip for 5000 word conti-
nuous speech recognition. We try to reduce the internal 
SRAM memory size, and hide the latency of external 
DRAM memory access by employing fine-grain pipelined 
architecture and a custom DRAM controller. Two hardware 
versions, one uses a 16bit SDRAM and the other employs a 
16bit DDR SDRAM, have been developed, and achieve the 
execution speed of 1.30 (with SDRAM) and 1.82 (with 
DDR SDRAM) times faster than real-time.   
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