
ADAPTIVE FILTERS USING MODIFIED SLIDING-BLOCK DISTRIBUTED ARITHMETIC
WITH OFFSET BINARY CODING

Walter Huang, David V. Anderson

Georgia Institute of Technology
School of Electrical and Computer Engineering

Atlanta, GA 30332-0250

ABSTRACT

An efficient way for computing the response of an adaptive dig-
ital filter is to use sliding-block distributed arithmetic (SBDA). One
disadvantage of distributed arithmetic is the amount of memory uti-
lized. By encoding the memory tables in offset binary code (OBC),
the size of the memory tables is reduced in half. However, the com-
putational workload remains unchanged. By modifying the compu-
tational flow, the computational workload can be reduced by almost
half at the expense of slightly more memory. This modified SBDA
structure is called SBDA-OBC. It has memory requirements 25%-
50% lower than SBDA depending on the size of the sub-filter. In
terms of the computational workload, SBDA-OBC is most advanta-
geous for large sub-filters and when the filter is split into few sub-
filters. In this case, the computational workload is reduced almost in
half.

Index Terms— adaptive filtering, distributed arithmetic

1. INTRODUCTION

A fundamental digital signal processing operation is filtering, and it
is commonly computed using multipliers and adders. When com-
puted sequentially, the multiplication of two B-bit numbers requires
from B/2 to B additions, and is time intensive. Alternatively, the
multiplication can be computed in parallel using B/2 to B adders,
but is area intensive [1, 2]. Whether a K-tap filter is computed seri-
ally or in parallel, it requires at least B/2 additions per multiplica-
tion plus the K − 1 additions for summing the products together.

A competitive alternative to using a multiplier is distributed
arithmetic (DA). It compresses the computation of the filter into
a memory table and generates a result in B-bit time using B − 1
additions. DA significantly reduces the number of additions needed
for filtering [3, 4]. Using a DA filter structure reduces the number
of additions by a factor K at the expense of a 2K word memory
table. This reduction in the computational workload is a result of
storing the pre-computed partial sums of the filter coefficients in the
memory table [1].

However, filter structures that use DA are not well suited for
adaptive applications. The primary advantage of DA is that pre-
computed tables can be used to eliminate multipliers in the filtering
operation; however, in an adaptive system, the contents of the ta-
bles must be continually recomputed. Regenerating the contents of
the DA tables requires a significant number of computations, reduc-
ing or eliminating the computational advantage of DA. A couple of
adaptive DA filters have been published to address this issue [5, 6, 7].
In these filter structures, the computational workload of the update
was reduced by only recomputing a few memory table entries per

sample period. However, this design choice results in a reduction in
the convergence rate of an adaptive algorithm.

To avoid such a reduction, a filter structure that updates the con-
tents of the entire memory table in a manner noticeably more ef-
ficient than brute force is required. A couple of such structures
exist [1, 8]. One such structure is called sliding-block distributed
arithmetic (SBDA) [1]. Although it uses one of the most efficient
methods for updating its entire memory table, its performance can
still be further improved.

In this paper, the focus is on modifying SBDA to significantly
reduce the computational workload and to encode the memory tables
in offset binary code (OBC). The background material on SBDA and
the use of OBC for DA are contained in Sections 2 and 3, respec-
tively. This is followed by a description of how SBDA is modified to
use OBC while significantly reducing the computational workload
over SBDA. Finally, the results are presented, and the advantages of
this modified SBDA structure over the original one are highlighted.

2. SLIDING-BLOCK DISTRIBUTED ARITHMETIC

An efficient way for computing the response of an adaptive digital
filter using DA is presented in [1]. This form of DA is called SBDA.
It is a coefficient driven mechanization of DA. Since the contents of
the memory tables are changing over time, the key issue is devel-
oping a method that minimizes the number of additions needed to
build those tables. In SBDA, the input data is collected in blocks
and then the appropriate samples are windowed and convolved with
the FIR filter coefficients as shown in Fig. 1. This type of DA only
changes the contents of one DA memory table every sample period.
In SBDA, a K-tap filter is broken into m+1 k-tap sub-filters where
m = K/k. Only the contents of the sub-filter with outdated sam-
ples need to be updated. If the update of that sub-filter were done
using brute force, then it would take (k/2 − 1)2k + 1 additions.
In SBDA, an observation is noted that the contents of the memory
change slowly over time. In other words, only the oldest input sam-
ple needs to be removed while the newest input sample needs to be
added. Thus, only 2k−1 additions and 2k−1 subtractions for a total
of 2k computations are required for a k-tap sub-filter. This results in
a reduction in the number of operations necessary by about a factor
of k/2−1 over brute force. However, in SBDA, the subtractions are
eliminated by associating each DA memory table with a fixed set of
inputs that further reduces the computational workload.

The computational workload for SBDA is split into performing
two functions, updating and filtering. The normal order of operation
is first to update and then to filter. The filtering function is done
in a typical DA fashion [4]; hence, its operation is not described
in this paper. The second function is for updating the memory table
that contains the outdated input samples, and the modification of this

545978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009

Fig. 1. An illustration of SBDA in action, where K = 4, m = 2,
and k = 2.

update method is one of the primary focuses of this paper.
To reduce the computational workload for updating m memory

tables, the objective of SBDA is to minimize the number of tables
that need to be updated, in this case just one. This goal is accom-
plished by associating each sub-filter with a fixed set of k sequential
input samples ordered in a sequential manner. Initially, it is assumed
that all the input data is stored in the m sub-filters and that all the in-
put samples are used. When a new sample arrives, it is not stored in
any sub-filter. Instead of replacing the oldest sample with this sam-
ple, which would take 2k−1 additions to insert the new sample and
2k−1 subtractions to remove the old sample, a new sub-filter whose
memory table has been initialized to zero can be created to store this
new sample. With no outdated samples in the table, the update is
simply to just add the new sample into the appropriate 2k−1 mem-
ory table locations. This process continues until the memory table
is full. At this point in time, one of the sub-filters is completely
outdated, and can be reused to create the new one.

This update process uses only 2k−1 additions and no subtrac-
tions per sample period, and further reduces the computational work-
load in half. However, this reduction is at the expense of an extra
sub-filter, hence an extra memory table. Also, as a consequence, the
filter coefficients may span more than m memory tables, and some
input samples in the first and last sub-filters may not be used. Any
unused sample is filtered with zero. An illustration of this update
process in action is shown in Fig. 1.

3. DISTRIBUTED ARITHMETIC USING
OFFSET BINARY CODING

OBC can be used to halve the size of the memory tables in DA [4].
The derivation for OBC begins with writing the input, x[n − i], as
follows.

x[n − i] =
1

2
{x[n − i] − (−x[n − i])}, i = 0, . . . , K − 1 (1)

Next, xi and −xi are written in two’s complement notation as shown
in 2 and 3 respectively and substituted back into 1 to yield 4.

x[n − i] = −bi0 +

B−1∑
l=1

bil2
−l

(2)

x[n − i] = −b̄i0 +

B−1∑
l=1

b̄il2
−l + 2−(B−1)

(3)

x[n − i] =
1

2

[
−(bi0 − b̄i0) +

B−l∑
l=1

(bil − b̄il)2
−l − 2−(B−1)

]
(4)

Eq. 4 can be rewritten as Eq. 5 where the variable, cil, is defined as
bil − b̄il.

x[n − i] =
1

2

[
−ci0 +

B−1∑
l=1

cil2
−l − 2−(B−1)

]
(5)

Now, with x[n − i] written in OBC notation, its incorporation into
the FIR filtering equation is detailed below in Eq. 8 where Q(bl) =∑K−1

i=0

h[i]
2

cil and Q(0) =
∑K−1

i=0

−h[i]
2

.

y[n] =

K−1∑
i=0

h[i]x[n − i] (6)

y[n] =
1

2

K−1∑
i=0

h[i]

[
−ci0 +

B−l∑
l=1

cil2
−l − 2−(B−1)

]
(7)

y[n] = −Q(b0) +

B−1∑
l=1

Q(bl)2
−l + 2−(B−1)Q(0) (8)

The reduction in memory comes at the expense of slightly more
hardware. This trade-off is often worthwhile [4].

4. COMBINING SLIDING-BLOCK DISTRIBUTED
ARITHMETIC WITH OFFSET BINARY CODING

By applying OBC to SBDA, the size of the memory tables can be re-
duced in half. However, this straight-forward combination of SBDA
with OBC only yields a memory benefit. Still, an addition or a sub-
traction is required for each entry in the updated memory table [1].
For a memory table not encoded using OBC, SBDA uses the same
number of operations because only half of the memory table, which
is twice the size of the one used when it is encoded in OBC, needs to
be updated. Therefore, the number of computations needed is equal
to the amount used in SBDA without OBC.

Recall that in SBDA when a DA memory table is about to be
updated, it is initialized to zero. To generate the tables in OBC
format, half of the most current input, x[n], needs to be added or
subtracted from every entry based on the bit stream for the current
sample, b0l. When b0l = “0”, 0.5x[n] is subtracted, and when
b0l = “1”, 0.5x[n] is added . As an alternative, a block of the k
most current samples can be collected and used to compute the ini-
tial condition, Q(0), so that the DA memory tables are initialized to
it. With the exception of the first step where no update is required,
each subsequent update only needs to add the current sample to the
entries where b0l = “1”, which maps only to half of the table. This
modification of SBDA is called SBDA-OBC.

A comparison of how the computational flow for updating a DA
memory table encoded using OBC for a 3-tap filter differs between
SBDA and SBDA-OBC is shown in Fig. 2. For both SBDA and
SBDA-OBC, three steps plus the initialization of the memory con-
tents are required to completely update a memory table. One step is
taken every sample period, and does not affect the filtering compu-
tation. For SBDA, eight additions are needed, and for SBDA-OBC,
six additions are required. In the first step for SBDA, no additions

546

are needed because the current sample plus zero is equal to the cur-
rent sample. For each subsequent step, four additions are used. In
the first step for SBDA-OBC, no additions are needed because no
update is necessary since the memory table is already initialized to
the correct values. For each subsequent step, it uses two additions at
every step. Plus, two additions for computing Q(0), which is neces-
sary to update the memory table. In this case, SBDA-OBC uses 25%
fewer additions than SBDA.

Fig. 2. A comparison of how SBDA and SBDA-OBC generates a
DA memory table encoded in OBC.

5. COMPARISON OF SBDA AND SBDA-OBC

A logical starting point for making a comparison of SBDA and
SBDA-OBC is to create formulas for certain critical measurement
criteria. In this paper, the measurements of importance are the data
memory usage and the computational workload required for the
computation of one sample. Since in the case of SBDA and SBDA-
OBC, the only type of computation of significance that is used is
addition. The computational workload is measured as the number of
additions needed for both updating the memory table and filtering
the data. These four formulas are listed below.

SBDAadditions = Bh (�K/k� + 1) +
(
2k−1 − 1

)
(9)

SBDA−OBCadditions = Bh (�K/k� + 1)+
(
2k−2 + 1

)
(10)

SBDAmemory = 2k (�K/k� + 1) (11)

SBDA − OBCmemory =
(
2k−1 + 1

)
· (�K/k� + 1) (12)

where Bh is the bit precision of the filter coefficients, K is the filter
length, and k is the size of the sub-filter. A table of the computa-
tional workload and of the data memory usage for different K when
Bh = 16 and when k is selected such that the computational work-
load is minimized is given below in Table 1. If there are multiple
configurations that minimize the computational workload, then the
configuration with the lowest memory usage is reported.

To illustrate the relative advantage of SBDA-OBC over SBDA in
terms of the number of additions needed for the computation of one
sample as Bh is varied and k = 8, a plot of this relationship is shown
in Fig. 3. From this figure, it is observed that SBDA-OBC is most
beneficial when the bit precision of the filter coefficients is low and
the filter is grouped into few sub-filters. This advantage diminishes

as the number of additions needed for updating becomes numerically
insignificant to the number of additions needed for filtering when
either Bh is large, the filter is split into many sub-filters (i.e. �K/k�
is large), or a combination of both.

50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

⎣K/k⎦

1
−

S
B

D
A
−

O
B

C
a
d
d
s

S
B

D
A

a
d
d
s

Bh=8

Bh=16

Bh=24

Fig. 3. A plot of the 1 − SBDA−OBCadditions
SBDAadditions

versus �K/k� for

varying Bh when k = 8.

Fig. 4 is a plot of the relative advantage of SBDA-OBC over
SBDA in terms of the number of additions needed for the compu-
tation of one sample when k is varied and Bh = 16. It is ob-
served that SBDA-OBC is most beneficial when the input samples
are grouped into large blocks and the filter is grouped into few sub-
filters. By increasing k, the ratio of computations used for updating
over computations used for filtering increases; hence, the benefit of
using SBDA-OBC over SBDA is significant.

An interesting observation is that SBDA-OBC is not beneficial
when k = 2. In this case, the additional overhead associated with
generating the initial condition, which is essential in the compu-
tational reduction of updating the memory table in other cases, in
SBDA-OBC is significant. Specifically, in this case, SBDA requires
one addition to update its memory table. However, SBDA-OBC re-
quires two additions, one to update a memory table entry and another
to compute the initial condition.

50 100 150 200 250
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

⎣K/k⎦

1
−

S
B

D
A
−

O
B

C
a
d
d
s

S
B

D
A

a
d
d
s

k=2
k=4
k=8

Fig. 4. A plot of the 1 − SBDA−OBCadditions
SBDAadditions

versus �K/k� for

varying k when Bh = 16.

A plot of the relative advantage of SBDA-OBC over SBDA in
terms of the memory usage when k is varied is shown in Fig. 5. Note,
this advantage is not dependent on K or on Bh. From the figure,
it is observed that SBDA-OBC is most beneficial when the input
samples are grouped into large blocks. Although SBDA-OBC still
has a 25% advantage over SBDA when k is small, this advantage is

547

Table 1. Computational Workload and Data Memory Usage for Various Filter Configurations when Bh = 16

koptimial* # of Additions # of Memory Words

K SBDA-OBC SBDA SBDA-OBC SBDA-OBC** SBDA SBDA-OBC SBDA-OBC** SBDA

16 6 5 65 73 79 99 68 128
32 6 5 113 121 127 198 119 224
64 6 6 193 193 207 363 363 704
128 7 7 337 337 367 1235 1235 2432
256 8 7 593 625 655 4257 2405 4736

* koptimal is defined as the k that minimizes the computational workload.
** The value provided is for the SBDA-OBC filter configuration when the size of the sub-filter is set to the koptimal for SBDA.

diminished because of the slight memory overhead associated with
SBDA-OBC. However, as the size of the memory tables increase
exponentially, this overhead quickly becomes insignificant, and the
advantage peaks at about 50%. This occurs when k ≈ 15.

2 4 6 8 10 12 14 16
0.25

0.3

0.35

0.4

0.45

0.5

k

1
−

S
B

D
A
−

O
B

C
m

e
m

o
r
y

S
B

D
A

m
e
m

o
r
y

Fig. 5. A plot of the 1 − SBDAmemory

SBDA−OBCmemory
versus k.

Since one of the primary focuses of this paper is the reduction of
the computational workload, it would be useful just to focus on only
the updating portion. In the following two equations, the number of
additions required to update the DA memory table over k samples
for SBDA and SBDA-OBC are given below. These equations are
for a k-tap sub-filter. Eq. 14 has two terms because the first one,
(k− 1)2k−2, is for updating the table and the second, (k− 1), is for
computation of the initial condition.

SBDAadds,updating(k) = (k − 1)(2k−1 − 1) (13)

SBDA − OBCadds,updating(k) = (k − 1)2k−2 + (k − 1) (14)

Fig. 6 is a plot of the relative advantage of SBDA-OBC over
SBDA in terms of the number of additions needed for only updating
the memory table when k is varied. This advantage is not dependent
on K or Bh. It is observed that SBDA-OBC is most beneficial when
the input samples are grouped into large blocks and only provides
a benefit when k > 3. This figure reaffirms the observation made
about Fig. 4 when k = 2.

6. CONCLUSIONS

Even in the worst case, the memory usage is still reduced by 25%.
This occurs when the size of the sub-filters are small. In most other
cases, especially when the sub-filters are large, the memory is re-
duced by almost 50%. In terms of computational workload, SBDA-
OBC is most advantageous for large sub-filters and when the filter is
split into few sub-filters. In this case, the computational workload is
reduced almost in half.

2 3 4 5 6 7 8
−1

−0.5

0

0.5

k

1
−

S
B

D
A
−

O
B

C
a
d
d
s
,
u
p
d
a
t
i
n
g

S
B

D
A

a
d
d
s
,
u
p
d
a
t
i
n
g

Fig. 6. A plot of the 1 − SBDA−OBCadds,updating

SBDAadds,updating
versus k.

7. REFERENCES

[1] D. L. Jones, “Efficient computation of time-varying and adap-
tive filters,” IEEE Transactions on Signal Processing, pp. 1077–
1086, March 1993.

[2] K. Hwang, Computer Arithmetic: Principles, Architecture, and
Design, John Wiley & Sons, Inc, 1st edition, 1979.

[3] A. Peled and B. Liu, “A new hardware realization of digital
filters,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 22, pp. 456–462, December 1974.

[4] S. A. White, “Applications of distributed arithmetic to digital
signal processing: A tutorial review,” IEEE ASSP Magazine,
vol. 6, pp. 4–19, July 1989.

[5] C. F. N. Cowan and J. Mavor, “New digital adaptive-filter im-
plementation using distributed-arithmetic techniques,” IEE Pro-
ceedings, Part F: Communications, Radar and Signal Process-
ing, vol. 128, pp. 225–230, August 1981.

[6] C. F. N. Cowan, S. G. Smith, and J. H. Elliott, “A digital adap-
tive filter using a memory-accumulator architecture: Theory and
realization,” IEEE Transactions on Acoustics, Speech, and Sig-
nal Processing, vol. 31, pp. 541–549, June 1983.

[7] C.-H. Wei and J.-J. Lou, “Multimemory block structure for im-
plementing a digital adaptive filter using distributed arithmetic,”
IEE Proceedings, Part G: Electronic Circuits and Systems, vol.
133, pp. 19–26, Februray 1986.

[8] D. J. Allred, H. Yoo, V. Krishnan, W. Huang, and D. V. Ander-
son, “LMS adaptive filters using distributed arithmetic for high
throughput,” IEEE Transactions on Circuits and Systems, vol.
52, no. 7, pp. 1327–1337, July 2005.

548

