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ABSTRACT
A wheeze is a continuous, coarse, whistling sound produced in the
respiratory airways during breathing, commonly experienced by per-
sons suffering from asthma. In this paper, we present a new method
for the detection of wheezing sounds in the normal breathing sounds.
In our study we perform an accurate statistical analysis of breathing
signals. We suggest a modeling for wheezing and normal sounds in
the wavelet packet domain using generalized gaussian distributions.
Our detection method is based on a specific multimodal Markovian
modeling proposed in a bayesian framework. We cope with the mul-
tidimensional aspect of the generalized gaussian distribution by us-
ing the theory of copulas. Experimental results are given in detail in
this paper.

Index Terms— Adventitious Respiratory Sounds, Data Fusion,
Hidden Markov Chain, Generalized Gaussian Distribution, Copulas
Theory.

1. INTRODUCTION

It is assumed that asthma, with diabetes, will be the most common
chronic illness in the XXIst century and is constantly growing. In
many countries roughly five percent of the population suffer from
asthma and other related respiratory illnesses. Its detection is still
carried out by pulmonary auscultation using a stethoscope and im-
plies limitations due to the subjectivity of this process. Indeed, it
depends on the individual’s own hearing, experience and its ability
to differentiate patterns. Nowadays, there is a clear need for a nor-
malization of the diagnosis methodology and for the development
of a common framework for all the medical community [1]. In this
context, much of the knowledge gained in recent years has resulted
from the use of modern digital processing techniques, which leads
to objective analysis and comparisons of respiratory sounds [2].

Adventitious lung sounds fall into two main categories: crackles
and wheezes [1, 3]. Wheezes are musical adventitious respiratory
sounds, also called continuous, and their presences keep relation to
partial airway obstruction. According to the American Thoracic So-
ciety, their duration is usually greater than 100 ms and smaller than
250 ms, which is significantly higher relatively to other abnormal
sounds, such as crackles, typically lasting less than 20 ms [1]. Its
dominant spectral range is sharp but it can be highly variable be-
tween one patient and another, as well as one pathology and another.
It is commonly observed between 100 and 1600 HZ [3]. Wheez-
ing with unforced breathing is correlated with severity of airway
obstruction, so its measurement is a useful tool for evaluating the
severity of asthma.
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A survey of literature from the last decade shows that the main
methodologies used for wheezes analysis is Fourier peaks detection
and spectrogram image analysis, based on the definition of a thresh-
old above which wheezing signals can be distinguished from the
noise of a normal breathing sound [4, 3]. In recent years, several
efforts for more sharpness and precision for the modeling and the
detection of wheezing sounds have been achieved. The time/scale
representation is often selected for its good time/frequency localiza-
tion properties. Hadjileontiadis et al. [5] use the time/scale represen-
tation of breathing sound recordings, while Bahoura et al. [6] use the
Subband based Cepstral parameters (SBC) to characterize wheezing
sounds.

We propose a segmentation using Hidden Markov Chain (HMC)
model in the wavelet packet domain. In a scaling and fusion prospect
of multivariate data, we go further in respiratory sounds analysis, by
detecting the respiratory phases (inspiration and expiration) [7] in
order to perform multivariate treatments on observations recorded
on several points of the chest. The data likelihood is a generalized
gaussian probability density function chosen for its good ability to
model a wide range of symmetric distributions. We will show up
that the shape parameter α of this probability density function can be
seen as a discriminant value for the respiratory sounds classification.

First part of the paper gives a review on Generalized Gaussian
Distribution (GGD) and its extension to a multivariate expression by
using the theory of copulas. Second part presents the segmentation
method and provides details on its computation usingMode of Poste-
rior Marginals (MPM) criterion and Iterative Conditional Estimation
(ICE) of the parameters. In particular, we specify how the estima-
tion of the variance and the shape parameter for GGD are computed.
Results on real data are then exposed and discussed.

2. MODELING OF PULMONARY SOUNDS IN WAVELET
PACKET DOMAIN

2.1. Data Representation Space and Data Scaling

Some previous studies on wheeze detection [4, 3] have been car-
ried out in the time-frequency domain, through a local power spec-
trum analysis using a Fourier transform. It is well known that this
transform suffers from a lack of precision and flexibility due to the
Gabor-Heisenberg uncertainty principle. Thus, in order to improve
the detection accuracy, we use a wavelet packet representation. The
decomposition based on the so-called Daubechies wavelet - using
20 filter coefficients - provides a well sparsed representation for our
respiratory signals and is well adapted to our segmentation method.

Wheezing sounds are observed in a frequency range between
100 and 1600 HZ, and their main frequency characteristics are well
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localized, usually in a 50 Hz wide frequency band. Analyzing the
whole [100, 1600] Hz window can lead to an overwhelming of the
relevant information, and we then need to chose wavelet packet cor-
responding to sharper frequency bands. The sounds we worked on
are sampled at 8000 Hz. The wavelet packets of level 5 were se-
lected, they correspond to a 125 Hz resolution per packet which is
acceptable for the detection of wheezes.

The auscultation is often performed on several points on the
chest of the patient, the physicians exploit the whole information
to construct their diagnoses. This can be seen like a kind of mental
information fusion, and we wish to imitate this methodology in our
model by developing fusing algorithms of these multivariate data.
It is obvious that the information consistency is a main issue for a
fusion method, thus a selection and a scaling of the relevant data
is necessary. Furthermore, wheezing signals usually appear at the
same time in each respiratory phase, and our fusion method will be
helpful to localize the wheezing waveform in several contaminated
respiratory phases.

In previous works, we proposed a non-invasive method to per-
form the detection of both inspiration and expiration phases in
recorded respiratory signal [7]. This detection is helpful to scale
homogeneous data (e.g an inspiration phase with another) and open
the possibility of a consistent data fusion. The scaling is done in the
time domain through spline cubic interpolation, which guarantees
to preserve the frequency properties of the signal [8]. The effective
fusion of the information is then performed using markovian model
(see section 3) with a multivariate GGD as the data likelihood (see
section 2.2).

2.2. Wavelet Coefficients Modeling

In order to propose appropriate priors for the wavelet coefficients,
the histograms related to the normal and pathological sounds have
been studied (see fig. 1). For crackling to normal respiratory noises,
it confirms the sparse property commonly formulated for the wavelet
distribution, stating that ”the wavelet transform of a large class of
signals results in a large number of small coefficients and in a small
number of large coefficients”, and that many signals can be well
approximated by a small number of their wavelet coefficients [9]. On
the other hand, the waveform of a wheezing signal owns the shape
of a sinusodal signal, and thus its distribution is more like a uniform
distribution.

Then we need a distribution which could model both peaky and
heavy tailed distributions, and uniform-like distributions. Not many
of these types of distributions can be found. Gaussian mixture have
already been exploited to tackle this kind of issue [6], but are diffi-
cult to estimate in this context where the data are centered for each
class. The generalized Gaussian distribution (GGD) showed better
abilities for the modeling of our data, and has already been approved
by Mallat [10] for the modeling of wavelet coefficients. The GGD is
given by:

fGG(x, α, σ, μ) =
η(α)α

2Γ(1/α)
exp (−(η(α)|x− μ|)α) (1)

With μ, σ and α respectively the mean, variance and shape parame-

ters, Γ(.) the gamma function and η(α) =
h

Γ(3/α)

σ2Γ(1/α)

i 1
2 .

The shape parameter α > 0 detemines the rate of exponential
decay of the PDF. Note that for α = 2 the density reduces to the
Gaussian density, whereas for α = 1 it becomes the Laplacian den-
sity. Furthermore, the uniform distribution ( α →∞ ) and δ (dirac)

function (α → 0) are also special cases of GGD. This distribution
can cover a wide range of distribution and explains its success for
data modeling, and especially for wavelet distribution fitting.

(a) (b)

Fig. 1. Wavelet histograms and GGD fitting for: (a) a normal sound
(α = 1.8); (b) a wheezing sound (α = 19.6).

2.3. Multivariate expression of the generalized gaussian distri-
bution using copulas

Each multivariate observation y = (y1, ..., yd) takes its values in
R

d We wish to use multivariate distribution to model the observation
likelihood f(y1, ..., yd). In the general non-Gaussian case, the com-
putation of multivariate distribution is not trivial and one assumes the
likelihood on each mode to be independent. Since such assumption
is often not verified, this problem can be solved with the copulas the-
ory. The basis of this theory is the Sklar Theorem [11] which asserts
the existence of a function C, called copula and defined on [0, 1]d,
binding the joint distribution function f(y1, ..., yd) to the marginal
distribution functions f1(y1), ..., fd(yd), as follows [11]:

f(y1, ..., yd) = f1(y1)× ...× fd(yd)C(F 1(y1), ..., F d(yd)) (2)

provided that the cumulative marginals F 1(y1), ..., F d(yd) are
continuous, and that C is differentiable.

For multivariate Gaussian copula Cg , the later is given by:

∀ u = {u1...ud} ∈ R
N

Cg(u, R) = det(R)−
1
2 · exp(−

ũt(R−1 − I)ũ

2
) (3)

where ũ = (Φ−1(u1), ..., Φ−1(ud)), with Φ the standard gaussian
cumulative distribution, R the inter-band correlation matrix and I
the d× d identity matrix.

To model non-gaussian multivariate densities, we use the equa-
tion (2) with a gaussian copula density given by the equation (3) and
and generalized Gaussian marginal densities defined by the equation
(1).

3. MULTIMODAL MARKOV CHAIN MODELING FOR
THE DETECTION OFWHEEZING

3.1. Hidden Markov Model

Let X = (xn)1≤n≤N and Y = (yn)1≤n≤N be two stochastic
processes. X is hidden and takes its value in a finite set Ω =
{ω1, .., ωK}. Y model the multivariate observation (yn)1≤n≤N .
The problem consists in estimatingX fromY. The Hidden Markov
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Chain (HMC) model has been widely used in this context [12, 13],
for its adaptability and time performance. We will use it in this paper
with the classical assumption of independence of Y conditionnally
on X , and the assumption of stationnarity for the chain X (HMC-
IN). The priors on X are then given by the initial probability π(.),
and theK ×K square transition matrix aij = p(xn = ωj |xn−1 =
ωi). The distribution of the couple (X,Y) is then given by:

P (X = {ω1...ωN},Y) = π(x1 = ω1)fω1(y1)

·
NY

n=2

a(n−1) nfωn(yn) (4)

This factorization allows one to compute the posterior probabil-
ities P (xn|y)1≤n≤N using the well-known forward-backward
probabilities. The final decision on X is then obtained through
a bayesian approach, using the Maximal Posterior Marginals crite-
rion (MPM) [14]. The parameters estimation is performed using the
ICE algorithm. Next section provides details on the computation of
the parameters estimation.

3.2. Model Parameters Estimation

In the case of unsupervised classification, all the HMC-IN param-
eters are unknown and must be estimated from the observed data
Y. The first step consists in estimating the prior parameters and the
data driven parameters. We use here the ICE procedure [15, 16].
The distribution of the stationary Markov chain X is driven by the
initial probabilities π(.) and the transition matrix aij . It is possible
to determine exact computation for these prior parameters. On the
contrary, the computation of exact estimation expressions for the
data driven parameters is intractable. Their update is then compute
in a stochastic way using samples from P (X|Y). The data driven
parameters to estimate are the meansM = {μj

k}, the form parame-
tersA = {αj

k} and the covariance matrixR = {Rk} for each class
ωk and each mode j.

Unsupervised classification first implies an initialization of the
parameters:

• Initialization: Θ[0] = {π[0], a
[0]
ij ,R[0],M[0],A[0]}.

Prior parameters onX are initialized in a deterministic way:

π[0](i) =
1

K
, a

[0]
ij =

j 3
4

if i = j
1

4(K−1)
if i �= j

(5)

Data driven parameters {R,M,A} are initialized using the
segmental K-means algorithm. The initialization of the covariance
matrix Ri associated with the class ωi ∈ Ω is a diagonal matrix
containing the variance for each mode previously estimated with the
K-means algorithm.

• For each q in N
∗, q ≤ Q (Q is set by the user), we

compute the following ICE estimation for the parameters update
Θ[q] = {π[q], a

[q]
ij ,R[q],M[q],A[q]}:

- Computation of the posterior probabilities ξ
[q]
n (i) = P (xn =

ωi|Y ) and Ψ
[q]
n (i, j) = P (xn = ωi, xn+1 = ωj |Y) using the

forward-backward probabilities. A realization X̂ [q] = {x̂
[q]
n }1≤n≤N

is then computed using ξ
[q]
n (i).

- Equation for the maximization step [16]:

Deterministic estimation of the prior parameters:

π[q](i) = ξ
[q]
1 (i), aij =

PN−1
n=1 Ψ

[q]
n (i, j)PN−1

n=1 ξ
[q]
n (i)

(6)

Stochastic estimation of the data driven parameters:

μ
[q]
k =

P
n∈I

[q]
k

yn

Nk
(7)

R
[q]
k =

P
n∈I

[q]
k

(yn − μ
[q]
k )(yn − μ

[q]
k )t

Nk
(8)

With I
[q]
k = {n|x̂

[q]
n ∈ X̂ [q], x̂

[q]
n = ωk} and Nk = card(I

[q]
k )

refers to the cardinal of this set.

The estimation of the shape parameter is solution of the follow-
ing equation:

α
j [q]
k + φ(1/α

j [q]
k ) + log(α

j [q]
k /Nk) + (9)

log(G
α

j [q]
k

)− α
j [q]
k

G′
α

j [q]
k

G
α

j [q]
k

= 0

With G
α

j [q]
k

=
P

n∈Ik |y
j
n − μ

j [q]
k |α

j [q]
k , G′α = ∂Gα

∂α
and

φ = Γ′(x)
Γ(x)

.

This equation is solved numerically in our algorithm.

4. RESULTS AND DISCUSSION

Our fusion methodology has been applyed on real respiratory data
with a frequency sampling of 8000Hz. The wavelet packet for the
level 5 have been exploited in reason of their good compromise be-
tween time and frequency resolutions regarding our problem.

The signals shown in fig. 2 (mode 1 and mode 2) are two real in-
spiration signals with overlaying wheezing, extracted from the aus-
cultation of a same patient. These signals are represented in the
wavelet packet domain, the frequency band picked is [250, 375] Hz.
Once the detection of the inspiratory phases is done for both signals,
the scaling of the relevant phases is computed. Thus, representations
of the both inspiratory signals in the wavelet packet selected contain
the same number of wavelet coefficients. This scaling offers the pos-
sibility to apply our fusion method. Figure 2 shows the data fusion
result of the proposed method and compares it with independant seg-
mentation of the two signals, in order to show up the relevance of our
method facing the high variability of respiratory sounds.

For the first mode, the segmentation problem is difficult because
of high vesicular coefficients, and its processing does not allow a
sharp detection of the wheezing waveform. Wavelet coefficients
from vesicular noises have been misclassified as wheezing coeffi-
cients (see fig. 2(a)). The segmentation of the second mode is rela-
tively easy since the wheezing waveform is well above the vesicular
coefficients. The processing on this signal is successfully performed
(see fig. 2(b)). We will then gain from the information contained in
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this second mode to rectify the segmentation error on the first mode.
As can be seen on the last figure 2(c), the fusionned segmentation
we obtain represents well the location of the wheezing waveform in
both signals.
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Fig. 2. Two wavelet packets (level 5, [250, 375] Hz) of two real in-
spiration phases with overlaying wheezing (mode 1 and 2), (a) gives
the segmentation result on the mode 1, (b) on the mode 2 and (c)
gives the result of the fusion method. ω1 is the ’normal class’ and
ω2 is the ’wheezing class’.

The form parameter α seems to be a good descriptor for the
quantization of the wheezing strength in a contaminated signal, since
it increases with the amplitude of the wheezing waveform. For the
wheezing class (ω2) in the mode 1, the estimation of our algorithm
gives α12 = 4.5, while it estimates α22 = 9.8 for the mode 2. This pa-
rameter can then be regarded as a descriptor of the state of a pathol-
ogy, and will be useful to measure the effectiveness of a treatment or
the degeneration of a pathology.

These results show that the proposed method uses both signals
to increase the effectiveness of the segmentation. However the seg-
mentation map does not return a sharp resolution, and in more rough
case where the wheezing is not defined as well as in the exemple
above, our fusion method fails to detect the wheeze. This is in part
due to the regularizing aspect of the HMC model, which tends to
drown some significant details of the signal. Also, only a few of the
information available is exploited (only one packet for each signal).
Further work will be based on hierarchical treatment using Hidden
Markov Tree (HMT) models, which include the scale-to-scale de-
pendency and are more reliable to cope with the sharp details.
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