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ABSTRACT

To noninvasively reconstruct transmembrane potential

(TMP) dynamics throughout the 3D myocardium using body

surface potential recordings, it is necessary to combine prior

physiological models and patient’s data with regard to their

respective uncertainties. To fulfill model-data melding for

this large-scale and high-dimensional system, data assim-

ilation with proper computational reduction is needed for

computational feasibility and efficiency. In this paper, we de-

velop a reduced-rank square root TMP estimation algorithm,

using dominant components of estimation uncertainties to

guide a more efficient model-data coupling in the square root

structure. The SVD-based reduced-rank error covariance is

used to represent and track the dominant estimation errors,

and unified into an integrated square root filtering frame-

work. Phantom experiments demonstrate the ability of this

framework to bring substantial computational reduction at

slight expense of degraded estimation accuracy. It therefore

improves the efficiency and applicability of the volumetric

myocardial TMP imaging in practice.

Index Terms— Computational reduction, inverse prob-

lem of electrocardiography, body surface potential

1. INTRODUCTION

It has been desirable but challenging to noninvasively recon-

struct transmembrane potential (TMP) dynamics through-

out the 3D myocardium from body surface potential (BSP)

recordings, which requires the coupling of general physiolog-

ical models and patient’s data with regard to their respective

uncertainties. We adopt the unscented Kalman filter (UKF)

[1] to develop the TMP estimation algorithm based on the

combination of Monte Carlo (MC) methods and KF update

rules [2]. It preserves the high-nonlinearity of the system

dynamics and ensure the computational feasibility. However,

regarding the large-scale and high-dimension of this problem,

further improvement on the algorithm efficiency is desired.

Efforts in computational reduction of data assimilation

for large-scale system have been long-lasting. In general,

it is achieved either by a simplification of system dynamics

[3], or the approximation of error covariance by, for instance,

representing it on a coarser grid [4] or reducing its rank by

truncation[5]. In comparison, approximation of error covari-

ances is a favorable option for the TMP imaging problem be-

cause of the high nonlinearity of TMP dynamics and the less

knowledge about model and data uncertainties.

Meanwhile, a square root (SR) structure is desirable for

preventing filtering divergence and improving its numerical

stability. Furthermore, it avoids the square root computation

when generating ensemble from the SR of error covariances.

Most existent SR filters are based on the cholesky factoriza-

tion of error covariance matrices [6], leading to an upper tri-

angular matrix which does not allow simple approximation.

As a result, though more robust, these filters in general are

not more efficient than their standard counterparts.

In this paper, we develop an integrated reduced-rank

square root (RRSR) TMP estimation algorithm where this

large-scale model-data melding is guided by the dominant

components of full estimation uncertainties. The RR error

model is introduced into the UKF and unified with the SR

filtering structure. Phantom experiments are performed to

evaluate the accuracy and computational efficiency of this

RRSR TMP estimation algorithm, demonstrating its ability to

bring substantial reduction of computational times with slight

degrading of estimation accuracy. It improves the efficiency

and applicability of volumetric myocardial TMP imaging.

2. PHYSIOLOGICAL-MODEL-CONSTRAINED
BAYESIAN PARADIGM FOR 3D TMP IMAGING

2.1. Cardiac electrophysiological system

A coupled meshfree-BEM platform is developed to represent

personalized combined heart-torso structure, where the 3D

myocardium is described by a cloud of meshfree points and

the torso by triangulated body surface [7]. This system con-

sists of a dynamic model for general physiological knowledge

on volumetric TMP activity (TMP activity model (1)), and an

observation model relating latent volumetric TMPs to exter-

nal BSP observations (TMP-to-BSP model (2)) [7].

{
∂U
∂t = −M−1KU + f1(U,V)
∂V
∂t = f2(U,V)

(1)

Φ = HU (2)
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where U and V are vectors composed of TMP and recov-

ery current from all meshfree points, and Φ contains BSP on

all boundary element vertices on the body surface. Matri-

ces M and K are constructed based on the meshfree method,

accounting for the intercellular coupling of electrical prop-

agation. They encode 3D myocardial structure and its con-

ductive anisotropy. f1(U,V) and f2(U,V) describe TMP

shapes on each meshfree point and include electrical hetero-

geneity across the heart wall. The transfer matrix H is devel-

oped based on the coupling of BEM and meshfree strategy,

encoding all the anatomical and conductivity information in

personalized heart and torso structures.

2.2. Stochastic state-space formulation

There are always discrepancies between general physiolog-

ical models and patient-specific conditions, and data errors

always arise in the practice of body surface mapping. To ex-

plicitly allow these uncertainties to exist, the physiological

system is reformulated into a state space representation. With

the state vector X(t) =
(
U(t)T V(t)T

)T
and the measure-

ment vector Y(t) = Φ(t), additive stochastic components

ω(t) and ν(t) are introduced into (1) and (2) respectively:

∂X(t)
∂t

=
(−M−1K 0

0 0

)
X(t) +

(
f1(X(t))
f2(X(t))

)
+ ω(t)(3)

Y(t) =
(
H 0

)
X(t) + ν(t) = H̃X(t) + ν(t) (4)

Since BSP data are collected by discrete sampling, the

continuous state space system (3,4) is discretized in time with

k denoting the sampling index:

Xk = Fd(Xk−1) + ωk (5)

Yk = H̃Xk + νk (6)

where a fourth-order Runge-Kutta solver is embedded in the

filtering process for temporal discretization of (5).

2.3. Standard TMP estimation algorithm

The main concerns for developing an appropriate TMP es-

timation algorithm arise from 1), the strong nonlinearity of

(3); 2), the implicit temporal discretization of (3) during the

filtering; and 3), the high-dimension and large-scale of the

system. We adopt the idea of the UKF [1] to develop a two-

step prediction-correction filtering framework: regarding the

aforementioned nature of the state model (5), the prediction of

Xk is performed in a MC manner and the ensemble is selected

in a deterministic way according to the unscented transform

[1]. Based on the linear measurement model (6), the estima-

tion of Xk given available data follows the KF update rules.

The algorithm at the kth iteration is outline as follows:

1. Selection of weighted ensemble set {Xk,i, Wi}2n
i=0:

{Xk,i}2n
i=0 =

(
X̂k X̂k ±

√
(n + λ)P̂xk

)

2. Prediction:

Xk+1|k,i = F̃d(Xk,i)
X̄−k+1 =

∑2n
i=0 Wm

i Xk+1|k,i

P−xk+1
=

∑2n
i=0 W c

i (Xk+1|k,i − X̄−k+1)(Xk+1|k,i −
X̄−k+1)

T + Qωk+1

3. Correction:

Gk+1 = P−xk+1
H̃T (H̃P−xk+1

H̃T + Rνk+1)
−1

X̂k+1 = X̄−k+1 + Gk+1(Yk+1 − H̃X̄−k+1)
P̂xk+1 = (I−Gk+1H̃)P−xk+1

where X̄−k+1 and P−xk+1
are the predicted mean and covari-

ance of Xk+1, while X̂k+1 and P̂xk+1 are the corresponding

final estimates. Qωk+1 and Rνk+1 are the predefined error

covariances of ωk+1 and νk+1 . n is the dimension of X,

and parameter λ is determined by n. As demonstrated in

our previous works, this algorithm provides feasible nonin-

vasive TMP imaging in practice [2]. Nevertheless, regarding

the high-dimensionality and large-scale of this problem, im-

provement in computational efficiency and stability is desired.

3. REDUCED-RANK SQUARED-ROOT FILTERING

The fundamental of this computational reduction is utilizing

dominant components of estimation uncertainties to guide the

model-data melding in a SR structure.

3.1. Definitions

Reduced-rank error model: The evolution of error covari-

ance Px represents the interaction of models, data and their

uncertainties during the estimation. Therefore, a careful re-

duction of it can account for the majority of the uncertainties

and guide the model-data coupling in a more efficient manner.

Besides, since the model and data uncertainties are usually

not well-known, a proper reduction is sensible for the sake of

computational efficiency.

Since the current algorithm is based on the minimum-

mean-square-error criterion, the reduced-rank approximation

of Px, Pq
x, should minimize the 2-norm of the residual error

covariance. The rank-q SVD of Px is a suitable option for this

purpose. Because Px is symmetric, its SVD reduces to eigen-

decomposition Pxk
= VkDkVT

k , where the diagonal matrix

Dk contains all the eigenvalues and Vk the corresponding

eigenvectors. Let Dq
k consist of the first q leading eigenval-

ues and Vq
k the corresponding eigenvectors, the reduced-rank

error model is defined as Pq
xk

= Vq
kD

q
kV

q
k

T
.

Square root structure: Instead of the widely-used

Cholesky decomposition, we present an alternative SR of

Pxk
, Sxk

, so that it could be unified with the SVD-based

reduced-rank error model: The reduced-rank approximation

of Sx is straightforward: Sq
xk

= Vq
k

√
Dq

k. Based on these

two definitions, the reduced-rank filtering and SR structure

could be unified into an integrated formulation.
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(a) (b)

Fig. 1. (a) TMP estimation accuracy (RRMSE) with increasing number of rank (q), divided by RRMSE in full-rank filtering.

(b) Computational time with increasing number of rank (q), divided by computational time in full-rank filtering.

3.2. Reduced-rank square-root (RRSR) filtering

Ensemble selection: Under the guidance of reduced-rank SR

of the error covariance (Ŝq
xk

), the ensemble at kth iteration is

selected according to the distribution of principle error com-

ponents:

{Xk,i}2q
i=0 =

(
X̂k X̂k ±

√
(q + λq)Ŝq

xk

)
(7)

Because q normally � n, the ensemble size is substantially

reduced. It brings substantial computational reduction, since

the most expensive computation in the original algorithm

comes from the propagation of individual ensemble member

through the state model.

Prediction: This ensemble set propagates through the

state model and predicts the mean and error covariance of

Xk+1. Based on the SR structure, S−xk+1
can be directly ob-

tained without computing the full error covariance P−xk+1
:

Xk+1|k,i = F̃d(Xk,i) (8)

X̄−k+1 =
2q∑

i=0

WiXk+1|k,i

S−xk+1
=

(√
Wi(Xk+1|k,i − X̄−k+1)i=0:2q

√
Qωk+1

)

To track the dominant components of the error covari-

ance after the incorporation of additional model errors Qωk+1 ,

S−xk+1
is projected onto the subspace spanned by the q domi-

nant eigenvectors of P−xk+1
:

Sq−
xk+1

= S−xk+1
Vq

k+1 (9)

where Vq
k+1 can be directly calculated by q-rank SVD on

S−xk+1
as Uq

k+1D
q
k+1V

qT
k+1.

Correction: Rewriting the KF update equations in SR

formulations:

Ŝxk+1 Ŝ
T
xk+1

= S−xk+1
(I− K̃k+1C̃k+1)S−T

xk+1
(10)

where K̃k+1 = C̃T
k+1(C̃k+1C̃T

k+1 + Rνk+1)
−1 and C̃k+1 =

H̃S−xk+1
, we obtain the evolvement of Sxk+1 as:

Ŝxk+1 = S−xk+1
Ṽk+1

√
D̃k+1 (11)

where Ṽk+1D̃k+1ṼT
k+1 = (I − K̃k+1C̃k+1), the computa-

tion of which requires eigendecomposition on a n×n matrix.

The reduced-rank strategy can be easily coupled to this

SR structure:

Gq
k+1 = Sq−

xk+1
K̃q

k+1 (12)

X̂k+1 = X̄−k+1 + Gq
k+1(Yk+1 − H̃X̄−k+1)

Ŝq
xk+1

= Sq−
xk+1

Ṽq
k+1

√
D̃q

k+1

where K̃q
k+1 = C̃qT

k+1(C̃
q
k+1C̃

qT
k+1 + Rνk+1)

−1 and C̃q
k+1 =

H̃Sq−
xk+1

. Ṽq
k+1 and D̃q

k+1 can be computed from the efficient

eigendecomposition of the q×q matrix I−K̃q
k+1C̃

q
k+1 instead

of the original n × n matrix, alleviating the computational

requirement of the original SR structure.

4. EXPERIMENTS

Phantom experiments regarding normal cardiac conditions

and right bundle branch blocks (RBBB) are performed to

evaluate the effect of RRSR structure on the accuracy of the

TMP estimates and computational time. With geometry and

fiber information provided by [8], the ventricular mass is

represented by 836 meshfree points with detailed 3D fiber

structure. The torso, given geometry in [9], is described by

triangulated body surface with 330 vertices selected as elec-

trode positions. The simple 2-variable model from [10] is

adopted as the TMP activity model. TMP estimation always

utilizes models parametrized with standard values defined in

[10], while the models used in generating true TMP and BSP

are modified according to the pathological condition under

study, and the parameters are always deviated from standard

values by WGN with means equal to 10% of the standard

values. Simulated BSPs are contaminated with 10dB white

Gaussian noise (WGN) as inputs for TMP estimation.
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(a) TMP reconstruction with full rank filtering

(b) TMP reconstruction with RRSR filtering (q = 400)

Fig. 2. Volumetric myocardial TMP dynamics in RBBB cardiac conditions, reconstructed with (a) standard filtering with full

rank error covariance, and (b) RRSR filtering with q = 400 ≈ 54%n. The blue and red in the color bar encodes the minimum

and maximum of TMP values, and black contours represent TMP isochrones.

Fig. 1 (a) lists the change of TMP estimation accu-

racy with increasing rank size q for TMP imaging in nor-

mal cardiac conditions and RBBB. The error of TMP es-

timates is measured by its relative root mean squared root

error (RRMSE) against the ground truth, and divided by the

RRMSE value obtained in full-rank filtering. As shown, the

degrading of the accuracy of TMP estimates remains below

20% in normal conditions when q is reduced to 100 = 12%n.

In RBBB, there is a relatively more notable decline of the

accuracy where q decreases to 600. It is reasonable because

the pathological condition introduce more model errors and

requires a larger value of q to track the same percent of dom-

inant components. Fig. 1 (b) lists the corresponding change

of computational time, which is also normalized by the time

used in full-rank filtering. It is evident that, when q drops,

the computational time exhibits much more rapid decreasing

than the estimation accuracy, where around 90% reduction

is achieved with q = 12%n. Fig. 2 compares the TMP

imaging results in RBBB using the full and q-rank filtering at

q = 54%n. As illustrated, TMP estimates with computational

reduction is close to that without reduction, where transmural

conduction abnormality is well reconstructed.

These experiments demonstrate the ability of RRSR fil-

tering to bring substantial reduction of computational time of

3D TMP imaging at minor expense of accuracy degrading. It

also shows its potential applicability in different cardiac con-

ditions. Real-data studies will be performed in the future, as

well the incorporation of adaptive q into the framework.
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