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ABSTRACT

The Common Spatial Patterns (CSP) algorithm has been widely used
in EEG classification and Brain Computer Interface (BCI). In this
paper, we propose a multilinear formulation of the CSP, termed as
TensorCSP or Common Tensor Discriminant Analysis (CTDA) for
high-order tensor data. As a natural extension of CSP, the proposed
algorithm uses the analogous optimization criteria in CSP and a new
framework for simultaneous optimization of projection matrices on
each mode based on tensor analysis theory is developed. Experi-
mental results demonstrate that our proposed algorithm is able to
improve classification accuracy of multi-class motor imagery EEG.

Index Terms— EEG, Tensor, Common Spatial Pattern, Brain
Computer Interface

1. INTRODUCTION

Tensors (also known as n-way arrays or multidimensional arrays)
are used in a variety of applications ranging from neuroscience and
psychometrics to chemometrics [1, 2, 3]. From a viewpoint of data
analysis, tensor analysis is very attractive because it takes into ac-
count spatial and temporal correlations between variables more ac-
curately than 2D matrix factorizations, and it usually provides sparse
common factors or hidden components with physiological mean-
ing and interpretation. In most applications, especially in neuro-
science (EEG, fMRI), the standard PARAFAC and Tucker models
were used[4, 5].

In order to implement a reliable BCI system, an effective dis-
crimination of different mental states from EEG recordings is very
important. To this end, Common Spatial Patterns (CSP) [6, 7] has
proven to be very powerful in determining spatial filters which ex-
tract discriminative brain rhythms for the motor imagery (MI) based
BCI. In the most of previous works on EEG classification, EEG data
is represented as a matrix in high-dimensional space. However, more
information such as frequency were not considered. In this paper,
motivated by the successes of the tensor LDA[8] and tensor sub-
space analysis[9], we extend CSP algorithm to high-order tensor and
propose a novel tensor-based CSP algorithm, called common tensor
discriminant analysis (CTDA), for EEG classification in MI based
BCI. The experimental results demonstrate the effectiveness of the
proposed algorithm and tensor representations of EEG signals.

2. TENSOR ALGEBRA

Tensors are multidimensional arrays which transform linearly
under coordinate transformations. The order of a tensor X ∈
R

N1×N2×...NM is M . An element of X is denoted by Xn1n2...nM ,
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where 1 ≤ ni ≤ Ni and 1 ≤ i ≤ M . We introduce the following
tensor operations relevant to this paper.

The outer product of a tensor X ∈ R
I1×I2×...IM and another

tensor Y ∈ R
J1×J2×...JN is X ◦ Y defined by

(X ◦ Y)i1i2...iM j1j2...jN = Xi1i2...iM Yj1j2...jN . (1)

The contraction of a tensor is obtained by equating two indices
and summing over all values of the repeated indices. Contraction
reduces the tensor order by 2. For example, given two vectors
x,y ∈ R

N ; the outer product of x and y is Z = x ◦ y; and
the contraction of Z is Zii = xT y, where the repeated indices
imply summation. The value of Zii is the inner product of x and
y. In general, for tensors X ∈ R

N1×N2×...×NM×K1×K2×...×KL

and Y ∈ R
N1×N2×...×NM×P1×P2×...×PQ , the contraction on the

tensor product X ◦ Y is

[[X◦Y; (1 : M)(1 : M)]]k1...kLp1...pQ =

N1∑
n1=1

. . .

NM∑
nM =1

Xn1...nM k1...kLYn1...nM p1...pQ .
(2)

When the contraction is conducted on all indices except the i-th in-
dex on the tensor product of X ,Y ∈ R

N1×N2×...×NM , we denote
this procedure as

[[X ◦ Y; (i)(i)]]

= [[X ◦ Y; (1 : i − 1, i + 1 : M)(1 : i − 1, i + 1 : M)]]

=

N1∑
n1=1

. . .

Ni−1∑
ni−1=1

Ni+1∑
ni+1=1

. . .

NM∑
nM =1

Xn1...nM Yn1...nM

= mati(X )mat
T
i (Y) = X(i)YT

(i), (3)

where matd(X ) or Xd denotes the mode-d matricizing of X , and
[[X ◦ Y; (i)(i)]] ∈ R

Ni×Ni .

The mode-d product of a M order tensor X ∈ R
N1×N2×...×NM

and a matrix U ∈ R
J×Nd is X×dU ∈ R

N1×...×Nd−1×J×Nd+1×...×NM

defined by

X ×d U =

Nd∑
nd=1

(Xn1n2...nM Ujnd)

=[[X ◦ U; (d)(2)]].

(4)

3. COMMON TENSOR DISCRIMINANT ANALYSIS

The CTDA tries to find the most discriminative tensor subspace. By
projecting the data points into the tensor subspace, different classes
have the most differing power ratios whereas the sum of total power

525978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009



remains constant. Here the power is calculated by the variance in the
time domain.

The CTDA algorithm is trained on labeled tensor data, i.e., we
have a set of M order tensor samples Xi ∈ R

N1×...×NM , i =
1, . . . , n. We can define the mode-M covariance tensor (i.e., high
order covariance) as

R =
1

n

n∑
i=1

[[Xi ◦ Xi; (M)(M)]], (5)

where R ∈ R
N1×...×NM−1×NM−1...×N1 is a 2(M−1) order tensor

which has a symmetric length on first M − 1 and last M − 1 mode.
The idea of CTDA is to find M−1 filters Wk, k = 1, . . . M−1

which can simultaneously diagonalize two covariance tensor. Simi-

lar to the CSP algorithm in multi-class case, W
(c)
k , k = 1, . . . , M −

1; c = 1, . . . , C are calculated respectively according to the criteria
defined as:

R(c) ×1 W
(c)
1

T
. . . ×M−1 W

(c)
M−1

T ×M W
(c)
M−1 . . .

×2(M−1)W
(c)
1 = D(c), and(

C∑
c=1

R(c)

)
×1 W

(c)
1

T
. . . ×M−1 W

(c)
M−1

T ×M W
(c)
M−1 . . .

×2(M−1)W
(c)
1 = I, (6)

where R(c) denotes a covariance tensor of the c-th class tensor
data calculated by Eq.(5), D(c) and I are two superdiagonal tensors.

W
(c)
k , k = 1, . . . M−1 are projection matrices on the k-th mode for

simultaneously diagonalizing c-th class covariance tensor R(c) and
total covariance tensor

∑C
c=1 R(c). This procedure is illustrated as

Fig.1 with four order covariance tensor R(c) and two projection ma-

trices of W1 and W2. After calculating the W
(c)
k for each class c,

we obtain the Wk = [W
(1)
k , . . . ,W

(C)
k ], k = 1, . . . , M −1, which

are optimal projection matrices on k-th mode for discrimination and
the tensor product of corresponding projection vectors on each mode
Wk|M−1

k=1 represents a projection tensor.

According to the CSP objective functions, let W(c)represents
the maximal discriminative pattern for c-th class, and Xc;i denotes
the i-th training sample, which is a two order tensor (i.e., matrix),
belonging to the c ∈ [1, . . . , C]-th class. We have

D = W(c)T
R(c)W(c)

=
1

nc

nc∑
i=1

[
(W(c)T

Xc;i)(W
(c)T

Xc;i)
T
]

=
1

nc

nc∑
i=1

[[
(Xc;i ×1 W(c)T

) ◦ (Xc;i ×1 W(c)T
); (2)(2)

]]

=
1

nc

nc∑
i=1

[[
(Xc;i ×1 W(c)T

) ◦ (Xc;i ×1 W(c)T
); (1̄)(1̄)

]]
.

(7)

Similarly, the constrain condition can also be written as:

I = W(c)T

(
C∑

c=1

R(c)

)
W(c)

=

C∑
c=1

nc∑
i=1

1

nc

[[
(Xc;i ×1 W(c)T

) ◦ (Xc;i ×1 W(c)T
); (1̄)(1̄)

]]
.

(8)

Fig. 1. The objective functions of common tensor discriminant anal-
ysis.

Based on analogy with Eq.(7) and (8), we define CTDA by re-

placing Xc;i, D and I with Xc;i, D ∈ R
H1×...×HM−1×HM−1×...×H1

and I ∈ R
H1×...×HM−1×HM−1×...×H1 respectively, then we ob-

tain

1

nc

nc∑
i=1

[[(
Xc;i

M−1∏
k=1

×k
W

(c)
k

T

)
◦

(
Xc;i

M−1∏
k=1

×k
W

(c)
k

T

)
; (M)(M)

]]

= D,

C∑
c=1

nc∑
i=1

1

nc

[[(
Xc;i

M−1∏
k=1

×k
W

(c)
k

T

)
◦

(
Xc;i

M−1∏
k=1

×k
W

(c)
k

T

)
; (M)(M)

]]

= I,
(9)

where W
(c)
k |M−1

k=1 denote k-th projection matrix on each of M − 1
modes respectively, and only retain Hk projection directions corre-
sponding to Hk/2 largest eigenvalues and Hk/2 smallest eigenval-
ues.

This objective functions can be further interpreted as that by pro-

jecting the training samples Xc;i to W
(c)
k |M−1

k=1 on each of M − 1
modes, the averaged covariance tensor, defined in Eq.(5), of c-th
class data is superdiagonal tensor and the averaged covariance ten-
sor of all classes data is unit superdiagonal tensor. Therefore, CTDA
obtains projection directions on multi-dimensions, which can maxi-
mize variance for one class and at the same time minimize variance
for the other class.

The problem defined in Eq.(9) does not have a closed form so-
lution, so we choose to use the alternating projection method, which
is an iterative procedure, to obtain a numerical solution. There-
fore, Eq.(9) is decomposed into M − 1 different optimization sub-
problems, as follows,
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1

nc

nc∑
i=1

[[(
Xc;i

M−1∏
k=1

×k
W

(c)
k

T

)
◦

(
Xc;i

M−1∏
k=1

×k
W

(c)
k

T

)
; (l)(l)

]]

= Dl,

C∑
c=1

nc∑
i=1

1

nc

[[(
Xc;i

M−1∏
k=1

×k
W

(c)
k

T

)
◦

(
Xc;i

M−1∏
k=1

×k
W

(c)
k

T

)
; (l)(l)

]]

= Il,

(10)

where l = 1, . . . , M − 1 and D = D1 ◦ D2 ◦ . . . ◦ DM−1, I =
I1 ◦ I2 ◦ . . . ◦ IM−1. This can be interpreted as that the tensor data

Xc;i filtered by matrices W
(c)
k |M−1

k=1 on M − 1 modes respectively
and matricized on each l-th mode would be diagonal matrices of
Dl, Il ∈ R

Hl×Hl .

To simplify Eq.(10), we define U
(c)
l as

1

nc

nc∑
i=1

⎡
⎣matl

⎛
⎝Xc;i

M−1∏
k=1;k �=l

×k
W

(c)
k

T

⎞
⎠ mat

T
l

⎛
⎝Xc;i

M−1∏
k=1;k �=l

×k
W

(c)
k

T

⎞
⎠

⎤
⎦ ,

(11)
and define Tl as

C∑
c=1

nc∑
i=1

1

nc

⎡
⎣matl

⎛
⎝Xc;i

M−1∏
k=1;k �=l

×k
W

(c)
k

T

⎞
⎠ mat

T
l

⎛
⎝Xc;i

M−1∏
k=1;k �=l

×k
W

(c)
k

T

⎞
⎠

⎤
⎦ .

(12)

Therefore, Eq.(10) are simplified as

W
(c)
l

T
U

(c)
l W

(c)
l = Dl, W

(c)
l

T
TlW

(c)
l = Il, (13)

where l ∈ [1 : M − 1], c ∈ [1 : C], Tl is equal to
∑C

c=1 U
(c)
l , and

W
(c)
l denotes projection matrix on l-th mode for c-th class. Thus,

the CDTA problem is equivalent to M − 1 sub-problems which can
be solved by two step PCA method. Similarly, we can combine the

W
(c)
l corresponding to each c class as:

Wl = [W
(1)
l , . . . ,W

(C)
l ], l = 1, . . . , M − 1. (14)

Therefore, for the M order training tensors X , CTDA would obtain
M − 1 optimal projection matrices Wl|M−1

l=1 by solving the M − 1
alternative sub-problems defined in Eq.(13). Unfortunately, the ma-

trices U
(c)
l |Cc=1andTl are not fixed while depend on Wk|M−1

k=1;k �=l.

Therefore, the projection matrices Wl|M−1
l=1 can not be computed

independently. A solution for that is to use an iterative procedure for
simultaneous optimization of Wl|M−1

l=1 .
Once we obtain the projection matrices based on CTDA, the M

order tensor data X could be projected on them defined as

Z = X
M−1∏
l=1

×lWl
T . (15)

Hence, the M − 1 projection matrices can maximize mode-M vari-
ance for one class and keep the sum of mode-M variance constant,
i.e., minimize mode-M variance for the others. The projected ten-
sors Z has maximum differentiation with the variances on M -th
mode.

The feature vector of tensor data X ∈ R
N1×N2×...×NM used

for classification is composed of the H1 × . . . × HM−1 variances
normalized by the total variance of the projections retained, and log-
transformed,

f = log

{
diag

[
matTM (Z) matM (Z)

]
tr [matTM (Z) matM (Z)]

}
. (16)

The transformation to logarithmic values is done in order to
make the distribution of the elements in f normal. The feature vec-
tors from the training data are used to estimate the parameters of a
classifier which are used to classify new data using the projection
matrices obtained from the training data.

4. EXPERIMENTAL RESULTS

In our application, EEG signals with only 5 electrodes (i.e., C3,
Cp3, Cz, Cp4, C4) over the motor cortex were recorded from the
scalp at a sampling rate of 250Hz for 2 and 3 classes MI-based
BCI experiments. The EEG are transformed using a Morlet con-
tinuous wavelet transform (CWT) with center frequency ωc = 1 and
bandwidth parameter ωb = 2. Thus, we obtain EEG tensor repre-
sentation X ∈ R

Nd×Nf×Nt which is the three-way time-varying
EEG wavelet coefficients array, where Nd, Nf , Nt are the number
of channels, steps of frequency, and time points, respectively. We
apply the original CSP algorithm and the proposed CTDA algorithm
for feature extraction and linear support vector machines (SVM) for
classification. The frequency band of 5-30Hz is thus adopted for
both the band filter in CSP algorithm and establishing EEG tensor
by CWT time-frequency transform in CTDA algorithm.

For further illustrations of the proposed method, we will pick
one specific dataset of subject S1 to visualize the projection patterns
on each mode which are obtained by CTDA method (see Fig.2).
There are two figures which denote the projection tensors for two
classes, i.e., left and right hand MI respectively. In each figure, the
two upper rows show largest projections on each mode, i.e., spatial
and frequency domains while the two lower rows show smallest pro-
jections. Each row represents one projection tensor and the spatial
and frequency projections are shown in left column and right column
respectively. By simultaneous optimization on multi-way tensor, we
obtain optimal spatial filters and frequency combinations which con-
tain the most discriminative information. In Fig.2(a), compared with
classes of right hand, the largest variance of left class mainly fo-
cuses on left scalp map and a large peak around 21Hz and 15Hz,
which demonstrates the ERS phenomena with specific spatial and
frequency domains. Meanwhile, the smallest variance of left hand
class, i.e., ERD phenomena, mainly focuses on right area and fre-
quency band of 10-12Hz and 15-20Hz when compared with right
hand, which demonstrates the ERD and ERS have not only differ-
ent spatial distributions but also have a slight variability across fre-
quency bins. Similarly, Fig.2(b) also illustrates the variability across
frequency bins of ERS and ERD for right hand class. Furthermore, it
is clearly shown that the ERD/ERS of different classes have distinct
spatial and frequency distributions simultaneously. This indicates
that the frequency information are not only subject-dependent but
also class-dependent. Hence, these frequency patterns can provide
further discriminative information which can not be obtained by only
spatial filters. As expected, the CTDA can find the most discrimina-
tion spatial filters and frequency bands simultaneously. So instead
of having a spatial projection onto a broad band (5-30Hz) signal as a
solution given by the CSP, the CTDA can split information further-
more by projecting onto multi-frequency signals of the same local
origin, stemming from different sub-bands, such that each projec-
tion fulfills the optimization criterion of maximizing the variance for
one class, while having minimal variance for the sum of all classes.
Summarizing, this yields an improved spatio-frequency resolution
of the discriminative signals. Therefore, by combining the tensor
representations of EEG and CTDA, more discriminative informa-
tion hidden in raw signals can be obtained automatically by learning
optimal projections on multi-dimensions simultaneously.
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(a) Left hand (b) Right hand

Fig. 2. Optimized projection matrices on each mode of EEG tensor
for each class respectively, i.e., (a) left hand class; (b) right hand
class. Left column represents projection matrices on spatial modality
by scalp map and right column represents projection matrices on
frequency modality.

The 10×10-fold cross validation results for three subjects with
two classes MI (i.e., left vs. right) and three classes case (i.e., left,
right and foot) are presented in Table.1. Compared with matrix-
based CSP algorithm, the tensor-based CTDA demonstrates im-
proved classification performance.

As compared with CSP, the CTDA helps to reduce the number of
parameters needed to model the data. For example, when a tensor X
has the size N1×. . .×NM , we need to estimate the projection matrix
W with the size N1 . . . NM−1 × H by vectorization operation and
CSP, but we only need to estimate the projection matrices Wk|M−1

k=1

with the corresponding size Nk ×Hk, k = 1, . . . , M − 1 in CTDA.
The advantage is the number of the parameters in CTDA is much
less than that of CSP. Furthermore, when the number of the training
samples is limited, the vectorization operation always leads to the
under sample problem. That is, for a small training set, CSP will
over-fit the data. Furthermore, the vectorization of a tensor makes it
hard to keep track of the information in spatial constraints. Hence,
when the number of the training samples is limited, CTDA performs
better than CSP.

In our experiments, only three-way tensors are used to ana-
lyze EEG signals, thus, CTDA would learn several two-way tensor
projections. To further explore the advantages of CTDA, the EEG
should be represented as tensors more than three order and hence
more detailed discriminative information will be extracted from
multiaspect.

Table 1. Classification Accuracies ± Standard Deviation (%) of 2
classes (left Vs. Right) and 3 classes (left, right and foot) MI EEG

Subjects
2 classes 3 classes

CSP CTDA CSP CTDA

S1 94.66±0.84 95.78±0.75 88.95±1.60 91.80±0.57

S2 88.50±0.70 92.50±1.18 83.11±1.39 87.56±0.75

S3 88.00±1.00 94.50±0.67 84.93±0.95 88.33±0.35

5. CONCLUSIONS

This paper focuses on the tensor representation and tensor-based fea-
ture extraction method for EEG signals. According to the idea of
CSP algorithm, we propose a new generalization of CSP algorithm
in the tensor case, called CTDA, by using tensor based subspace
learning. Different from traditional CSP, the proposed algorithm is
performed in the tensor space rather than the vector space. Exper-
imental analysis for classification of MI based EEG demonstrates
the better performance of proposed algorithm and the advantages of
tensor analysis methods when applied in BCI.
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