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ABSTRACT
The problem is statistical prediction of the number of people that
will be infected with a contagious illness in a closed population
over time. The prediction is based on the Susceptible-Infectious-
Recovered (SIR) model of epidemic dynamics with inhomogeneous
population mixing. The paper presents a theoretical analysis of the
predictive accuracy based on the Cramér-Rao lower bound (CRLB).
The CRLB provides a tool that enables us to quantify the predic-
tion accuracy of a scale of an epidemic as a function of the prior
uncertainty of SIR model parameters, measurement accuracy of the
number of infected people and the amount of data available for pro-
cessing. A verification of the theoretical analysis is carried out by
Monte Carlo simulations.

Index Terms— Epidemic model, epidemic prediction, mathe-
matical biology, importance sampling, Cramér-Rao bound, nonlin-
ear filtering.

1. INTRODUCTION

An epidemic is a chain reaction of disease spread within a popula-
tion. From the early days of humanity diseases have been the source
of fear and superstition, infecting some individuals and sparing the
others. Over the past hundred years mathematics has been used to
understand and predict the spread of diseases. The progress of an
epidemic in many cases can be described by mathematical models
that involve only a few parameters. One class of such models, called
compartmental models, is based on a premise that the population
can be subdivided into sets of distinct classes in relation to the dis-
ease. The common classes (or compartments) in the SIR dynamic
model are: susceptible (S), infectious (I) and recovered (R). Sus-
ceptible individuals have never come into contact with the disease.
They are able to catch the disease and thus to move to the I compart-
ment. Eventually the infectious individuals recover and thus move
into the R compartment. Assuming that (1) the population size is
fixed (no births or deaths), and (2) the population mixing is homoge-
neous (each susceptible person is equally likely to become the next
victim), the dynamics of the compartments can be simply expressed
by the Kermack-McKendick model [1]. Looking at the number of in-
fected people over time in a large population with no prior exposure
to the disease, one can observe three main phases. First is the es-
tablishment phase, where the number in compartment I grows very
slowly. Second is the exponential-like growth of the compartment
I . Finally in the endemicity phase, when the significant proportion
of population is immune, the incidence of new infections tends to
decline. When the susceptible population is exhausted, the primary
epidemic is over.

Recently we have witnessed an increased interest in the predic-
tion of epidemic spreads (due to bioterrorism or emerging diseases)

using the proposed mathematical models [2]. The benefits of epi-
demic prediction are manyfold, from the evaluation of control mea-
sures (e.g. vaccination) to forecasting the needs of affected popula-
tion. Kao [3] used the spatial spread models to predict the epidemic
of “foot and mouth diseases” in the UK in 2001. Anderson et al [4]
analysed the the data from the SARS epidemic (Hong Kong, 2003),
in order to estimate the basic reproductive ratio for this disease.

In this paper we adopt the power-law scaling for inhomogeneous
population mixing in the temporal SIR epidemic model [5]. This ap-
proach has been found to result in better epidemic modelling in big
cities. Using the counts of infected (and possibly recovered) people
as measurements, the goal is to predict the temporal progress of an
epidemic, that is how many people will be infected with a contagious
illness over time. The most important aspect of the prediction is the
epidemic peak: its timing and its size. There are five unknown pa-
rameters in the power-scaled SIR model. While common techniques
for epidemic prediction require the model parameters to be known
precisely, we estimate the parameters from the available data, as-
suming only some uncertain prior knowledge of their values. Our ap-
proach is based on the Cramér-Rao lower bound (CRLB), which en-
ables us to quantify the prediction accuracy of a size of an epidemic
as a function of: prior uncertainty of the scaled SIR model param-
eters; measurement accuracy of the number of infected/recovered
people and the amount of data available for estimation.

2. SIR EPIDEMIC MODEL FOR INHOMOGENEOUS
MIXING

An outbreak of an epidemic is usually far more rapid than the vital
dynamics of a population. Hence we can neglect the birth-death
process and migrations to state that

S + I + R = P (1)

where P is the (constant) number of people in the population. For
simplicity and without loss of generality we can consider a nor-
malised system where P = 1, s = S/P , i = I/P and r = R/P .
The SIR dynamics for inhomogeneous population mixing can be ex-
pressed then by the following set of differential equations [5]:

ds

dt
= −

ρ

τ
i sν (2)

di

dt
=

ρ

τ
i sν −

i

τ
(3)

where ρ, ν and τ are the parameters of the model, to be described
in the sequel. Note that the differential equation for the number
of recovered people is redundant: by differentiation of (1) we get
ds/dt + di/dt + dr/dt = 0 and from (2) and (3) it follows that
dr/dt = i/τ .
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Parameter ρ is referred to as the basic reproductive number1. It
represents the average number of people infected by a direct contact
with a sick person, before his/her recovery. The epidemic spreads out
only if ρ > 1, otherwise it gradually disappears. For most diseases
parameter ρ is approximately known. For example, for smallpox
ρ ∈ [3, 5], while for the measles ρ ∈ [16, 18]. Parameter τ denotes
the average number of days a sick person is infectious. For most
diseases this number is also partially known. Parameter ν represents
the power-law scaling and reflects the population mixing (which de-
pends on the social structure). For homogeneous population, ν = 1.
In general it is very difficult (and costly) to measure ν, although it is
known that in the cities this parameter typically ranges from 1.7 to
2.06. Let p(ρ), p(τ ) and p(ν) denote the prior probability density
functions (PDFs) of ρ, τ and ν, respectively.

The prediction of epidemic dynamics needs to be carried out
based on the measurements of the number of infected (and possi-
bly the number of recovered) people. These measurements arrive
typically at non-uniform sampling intervals. The initial values of i
and s in (2) and (3) in general are not precisely known and will be
specified based on the first measurements of infected and recovered
people. Let the prior PDFs of s0 and i0 be p(s0) and p(i0), respec-
tively.

Appendix A presents a verification of the SIR model against a
set of experimental data.

3. PROBLEM FORMULATION

The problem of epidemic prediction will be formulated in the frame-
work of nonlinear filtering [6]. This requires the specification of the
state vector, its initial (prior) PDF, the state dynamic model and the
measurement model.

Since parameters ρ, τ and ν are only partially known, we need
to include them in the state vector. Thus we adopt the state of an
epidemic to be defined as follows:

x =
[
i s τ ν ρ

]
ᵀ (4)

where ᵀ is the matrix transpose. Using eqs. (2) and (3), the evolution
of epidemic state can be written as ẋ = g(x) where

g(x) =
[
(ρsν − 1)i/τ −ρisν/τ 0 0 0

]
ᵀ

. (5)

The nonlinear differential equation governing the evolution of the
state cannot be solved in closed-form. The Euler method provides
a simple approximation valid for small integration interval T > 0:
x(t + T ) ≈ x(t) + Tg(x(t)). The state-evolution in discrete-time
can then be expressed as:

xk+1 ≈ fk(xk) (6)

where k is the discrete-time index and transition function fk(xk) is
given by

fk(xk) =

⎡
⎢⎢⎢⎢⎢⎣

xk[1] + Txk [1]
xk [3]

[
xk[5]xk[2]xk [4] − 1

]
xk[2]− Txk [5]·xk[1]

xk [3]
xk[2]xk [4]

xk[3]
xk[4]
xk[5]

⎤
⎥⎥⎥⎥⎥⎦ (7)

Here xk[j] represents the jth component of vector xk.

1In the population dynamics literature this parameter is by convention
denoted R0. We opt for ρ in order to avoid a possible confusion with the
number of recovered people R at initial time.

For a fictitious disease and city population with the following
parameters ρ = 2.6, τ = 10.2 days, ν = 2.06, and initial val-
ues i0 = 0.002 and s0 = 0.998, the time evolution of ik , sk and
rk, computed using dynamic equation (6), is plotted in Fig.1. The
integration time step in the implementation was set to T = 30 min-
utes. The red line in Fig.1 indicated the number of infected people,
ik = xk[1]. In this case the epidemic peaks after 41.17 days when
about 14.15% of population is infected.
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Fig. 1. SIR model: the number of infected ik (red line), susceptible
sk (blue line) and recovered rk people.

The measurements available for estimation/prediction are the
number of infected and the number of recovered cases. The sources
of these two types of measurements are assumed independent. The
measurements arrive occasionally, at time instances t� > 0, and at
discrete-time � are then modelled by:

α� = i� + u� (8)
β′

� = r� + v′
� (9)

where u� and v′
� are zero-mean white and mutually independent

Gaussian, u� ∼ N (0, σ2
u), v′

� ∼ N (0, σ2
v). Since r� = 1− s� − i�,

we can introduce an equivalent measurement β� = (1− β′
�), which

according to (9) takes the form:

β� = i� + s� + v� (10)

where v� ∼ N (0, σ2
v).

The measurements vector z� =
[
α� β�

]
ᵀ can now be linearly

related to the state vector as follows:

z� = Hx� + w� (11)

with

H =

[
1 0 0 0 0
1 1 0 0 0

]
. (12)

where w� ∼ N (0, Rw) and Rw = diag[σ2
u σ2

v ]. The assump-
tion here is that measurements α� and β� come from uncorrelated
sources.

Let us denote the set of measurements collected up to time tL by
z1:L = {z�}

L
�=1, and the times when these measurements are col-

lected by TL = {t�}
L
�=1. In the Bayesian paradigm, the entity of in-

terest is the PDF of the state at time tk given z1:L, that is p(xk|z1:L).
If tk > tL, this is a predictive density. We are interested in this pre-
dictive density well before the peak of ik = xk[1].
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4. THEORETICAL ERROR ANALYSIS

Let us denote by x̂k|L any unbiased estimator of the state vector,
based on the measurement set z1:L. The error covariance of x̂k|L is
limited from below as follows [7]:

E
{(

x̂k|L − xk

) (
x̂k|L − xk

)
ᵀ
}
≥ J

−1
k|L (13)

where J−1
k|L is the CRLB, that is Jk|L is the information matrix de-

fined as:

Jk|L = E {[∇xk
log p(xk, z1:L)] [∇xk

log p(xk, z1:L)]ᵀ} . (14)

Here E{ } is the expectation operator; p(xk, z1:L) is the joint prob-
ability distribution of the state xk and the measurement set z1:L;∇x

denotes the gradient operator with respect to vector x.
Let us introduce matrix Fk, as the Jacobian of nonlinear func-

tion fk defined in (7),

Fk = [∇xk
[fk(xk)]ᵀ ]

ᵀ (15)

The Jacobian Fk is state dependent and we assume here evalu-
ated at the true state xk. Since the epidemic state xk depends on
the initial random state x0, characterised by initial PDF p(x0) =
p(i0)p(s0)p(τ )p(ν)p(ρ), the Jacobian is also random.

For the linear measurement equation as in (11), the information
matrix Jk|L, where tk > tL, can be computed using the following
recursion [8, 9]:

Jm+1|L =

{
(F−1

m )ᵀ Jm|L F−1
m + HᵀR−1

w
H, if tm+1 ∈ TL

(F−1
m )ᵀ Jm|L F−1

m otherwise
(16)

for m = 0, 1, . . . , k − 1. The recursion (16) starts with the initial
information matrix J0|L, calculated from the prior density p(x0) as
[8]:

J0|L = E{−∇xk
∇ᵀ

xk
log p(x0)} (17)

Assuming Gaussian initial PDF: p(x0) = N (x̄0, P0), it follows
that J0|L = P−1

0 .
The CRLB computed as:

Cm|L = E{J−1
m|L}, m = 0, . . . , k (18)

where expectation is with respect to x0, is referred to as the expected
conditional CRLB [10].

From (15) and (7) by differentiation we get the elements of the
Jacobian Fk:

Fk[1, 1] =
∂fk[1]

∂xk[1]
= 1 + T

xk[5]

xk[3]
xk[2]xk [4] −

T

xk[3]

Fk[1, 2] =
∂fk[1]

∂xk[2]
= T

xk[1]xk[4]xk[5]

xk[3]
xk[2](xk [4]−1)

and likewise for the remaining terms.
Let us illustrate the predictive CRLB using the same parame-

ters as in Fig.1. The measurements z� were taken once per day
(hence T = {1day, 2days, . . . }), with σu = σv = 0.001. The
last available measurement is taken at tL = 10, 20 and 30 days,
and we compute for each case the CRLB for the period from zero
time to tk = 100 days. The initial covariance was set to P0 =
diag[σ2

u, σ2
u + σ2

v, σ2
ρ, σ2

τ , σ2
ν ], with σρ = 0.5, στ = 1.0 and

σν = 0.5. Fig.2 demonstrates the achievable predictive accuracy for
the number of infected people ik for: (a) tL = 10 days, (b) tL = 20
days and (c) tL = 30 days. The red line is in all cases identical with

the red line in Fig.1, it shows the true ik. The blue dashed lines show
the upper and lower 1σ limits, that is ik±

√
Ck|L[1, 1], for the case

where both α� and β� measurements are available, see (8) and (10).
Finally, the green dashed lines are indicating the same limits when
only α� measurements are available.
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(a) tL=10 days
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(b) tL=20 days
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(c) tL=30 days

Fig. 2. The predictive accuracy based on the CRLB for: (a) tL = 10
days; (b) tL = 20 days; (c) tL = 30 days

Observe from Fig.2 how the prediction uncertainty reduces as
we increase tL. If we adopt the differences in the timing and the
size (maximum value) of the peaks of ik ±

√
Ck|L[1, 1] curves to

represent the measure of the timing and size 1σ uncertainty of the
epidemic prediction, then from Fig.2 we can make the following
observations. First, the lack of measurements β� has a very small
impact on the accuracy in the prediction of the number of infected
people (increases uncertainty only slightly). Second, the prediction
of the timing of the peak of an epidemic appears to be more accurate
than the prediction of the size (the maximum value of the number of
infected) of the epidemic.

Note that based on the CRLB we can (similarly to Fig.2) quan-
tify the epidemic prediction performance as a function of prior SIR
parameter uncertainty (represented here by matrix P0) or the mea-
surement accuracy (variances σ2

u and σ2
v). Due to the limited space

these results are not shown here.
In order to verify the CRLB based analysis we have performed

a set of Monte Carlo runs and compared the obtained averaged error
performance with the theoretical performance of the CRLB.
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The SIR model parameters, the prior PDF and the character-
istics of measurements α�, were the same as we described earlier
(measurements β� not used). The initial values of i0 and s0 were
based on the first measurement, assuming (correctly) that r0 = 0,
i.e. î0 = α1 and ŝ0 = 1 − α1. The estimation of parameters τ , ν
and ρ was carried out using a Bayesian importance sampling tech-
nique known as progressive correction (for details see [11]). Using
only tL = 20 days of measurements (i.e. a set α1:20), we obtain
estimates τ̂ , ν̂ and ρ̂ which are then used with î0 and ŝ0 in (6) to
compute îm|L form = 1, . . . , 100.

Let î
(c)

m|L denote a result obtained in Monte Carlo run c =

1, . . . , C, then the RMS error is
√

1
C

∑C

c=1(̂i
(c)
m|L − ik)2, where

ik is the truth. Fig.3 shows the empirical RMS error obtained from
C = 100 runs (blue solid line) and the theoretical square-root of the
CRLB, i.e.

√
Cm|L[1, 1] (dashed red line). The agreement is fairly

remarkable and confirms the theoretical analysis presented above.

5. SUMMARY

The paper presented a theoretical analysis of temporal predictabil-
ity of epidemic evolution using the power-law scaled SIR dynamic
model and the Cramér-Rao bound as a an error performance tool.
For a given uncertainty of the SIR model parameters, measurement
accuracy of infected people and the number of measurements avail-
able for estimation, we can determine theoretically the temporal
spreading, the size and the timing of a peak of an epidemic. Monte
Carlo simulations, using the progressive correction algorithm for
SIR model parameter estimation, confirm the validity of theoretical
analysis. The implication of this work goes beyond epidemiology as
the framework is applicable to various population models, models
for resource competition, terrorist cell spreading, etc.

0 10 20 30 40 50 60 70 80 90 100
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

T i m e [days]

Pr
op

or
tio

n o
f to

tal
 po

pu
lat

ion

sqrt(CRLB)
PC prediction

Fig. 3. Theoretical CRLB versus the empirical RMS error for the
epidemic prediction based on L = 20 measurements

A. SIR MODEL AGAINST EXPERIMENTAL DATA

Experimental data were obtained using CROWD, an agent based
population model [12] of a virtual town of 5000 inhabitants, cre-
ated in accordance with the Australian Census Bureau data. The
CROWD includes typical age/sex breakdown and family-household-
workplace habits with realistic day-to-day contacts for a disease
spread. The blue line in Fig.4 shows the number of people of this
town infected by a fictitious disease, reported once per day during
a period of 154 days. The dashed red line represents the power-law
scaled SIR model fit with parameters ν̂ = 1.2042, τ̂ = 9.3825 and

ρ̂ = 2.2932. These estimates were obtained using the progressive
correction algorithm, applied to all data points.
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Fig. 4. Measured number of infected Ik (experimental data obtained
using CROWD) versus the power-scaled SIR model fit
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