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ABSTRACT

Network component analysis (NCA) has been established
as a promising tool for reconstructing gene regulatory net-
works from microarray data. NCA is a method that can re-
solve the problem of blind source separation when the mix-
ing matrix instead has a known sparse structure despite the
correlation among the source signals. The original NCA al-
gorithm relies on alternating least squares (ALS) and suffers
from local convergence as well as slow convergence. In this
paper, we develop new and more robust NCA algorithms by
incorporating additional signal constraints. In particular, we
introduce the biologically sound constraints that all nonzero
entries in the connectivity network are positive. Our new ap-
proach formulates a convex optimization problem which can
be solved efficiently and effectively by fast convex program-
ming algorithms. We verify the effectiveness and robustness
of our new approach using simulations and gene regulatory
network reconstruction from experimental yeast cell cycle mi-
croarray data.

Index Terms— Gene regulatory networks, microarray,
network component analysis, convex programming

1. INTRODUCTION

Recent advances in genome sequencing and high-throughput
microarray technologies make it possible to quantitatively in-
vestigate the underlying mechanisms that define gene inter-
action. More specifically, we can now consider the under-
lying biological model as an information processing system.
With this signal processing framework, the challenge is to
model gene interaction from experimental microarray data as
a gene regulatory network. A key focus is on developing
tractable system identification techniques capable of recon-
structing gene regulatory networks of a large size from small
microarray datasets.

Earlier approaches to modeling gene regulatory network
include dynamic Bayesian networks (DBN) [1], probabilis-
tic Boolean network (PBN) [2], and differential/difference
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equations [3]. It has also been shown that the network can
be approximated by a linear instantaneous signal system [4].
Among various algorithms assuming linear instantaneous sig-
nal models, such as principal component analysis (PCA) [5]
and independent component analysis (ICA)[6], the network
component analysis (NCA)[4] is a very effective approach
since it incorporates useful and biologically sound assump-
tions.

More specifically, a true gene regulatory network always
has a sparse structure, and sometimes the non-zero entries of
its (sparse) connectivity matrix can be obtained from ChIP-
chip experiments [7]. Even when experimental data on the
structure of the network are unavailable, the structural infor-
mation sometimes can be extracted partially from the litera-
ture or predicted by bioinformatics methods [8]. The NCA
approach makes use of this (sparse) structure information. If
some mild conditions, called NCA criteria, can be satisfied,
the NCA algorithm can fit the gene expression data (measured
by microarray) to the linear network model under the con-
straints represented by the NCA criteria. The NCA algorithm
can then fully reconstruct the network (including the connec-
tivity matrix and the regulatory signals) if the measurement is
noise-free.

The original NCA algorithm applies alternating least
squares (ALS) to solve a not very well posed optimization
problem. Though very effective, it suffers from three compu-
tational drawbacks as pointed out in [9]:

(1) it may be unstable due to ill-conditioned matrices;
(2) it may converge to local minima;
(3) it is inefficient and time consuming for relatively large

networks.

Tikhov regularization has been proposed to overcome the
convergence problem [9]. Most recently, authors of this
manuscript proposed a new algorithm, FastNCA, that over-
come the 3 drawbacks [10]. FastNCA provides a closed-form
solution to NCA through matrix factorizations.

One common feature of the existing NCA approaches is
that it exploit only the knowledge on the zero location of the
(sparse) connectivity matrix. Since microarray data are very
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noisy, we seek to incorporate additional constraints to reduce
noise sensitivity. From biological information, we find that,
without loss of generality, all nonzero entries in the connec-
tivity matrix can be positive. We hence develop a new NCA
algorithm to take advantage of such constraints against noise.
We further formulate an optimization problem that can be
solved by efficient convex programming algorithms.

Our paper is organized as follows. In Section 2 we intro-
duce the model of gene regulatory network and the NCA for-
mulation. We formulate, in Section 3, a convex optimization
problem to tackle the NCA problem. In Section 4 we impose
new solution constraints onto the NCA problem, and incor-
porate efficiently in the convex programming framework. We
provide simulation and experimental results in Section 5, fol-
lowed by discussions and conclusions in Section 6.

2. GENE REGULATION MODEL AND NETWORK
COMPONENT ANALYSIS

x1 x2 x3 x4 x5 x6 x7

TF1: s1 TF2:s2 TF3: s3

Fig. 1. Transcriptional regulatory model.

We consider gene expression with a transcriptional regu-
latory model, as illustrated by Figure 1. Gene expressions are
regulated by transcription factors. The upper layer in the fig-
ure represents the expression level of activated transcription
factors (TF) or transcription factor activities (TFA), and the
lower layer represents the microarray gene expression data.
Consider a network of N genes regulated by M TFs with ob-
served measurements over K time points. This network can
be modeled as an instantaneous linear mixing system

X = AS+ Γ, (1)

where the mixtures X (with dimension N ×K) are gene ex-
pression levels which can be measured by microarray, the
mixing matrix A (N × M ) is called connectivity matrix of
the network, the sources S (M ×K) are the unknown TFAs,
and Γ is the measurement noise.

We only have access to the gene expression data X , i.e.,
the microarray data. The aim is to estimate the connectivity
matrix A and the TFAs S from the microarray data X. Our
strategy is to estimate the connectivity matrix first. With the
estimation of A, denoted by Â, from which the TFAs can be
estimated by algorithms such as minimum mean square error
(MMSE) or zeroforcing inverse from

Ŝ = Â
+
X, (2)

where Â+ is the pseudo inverse of Â.
The method developed in [4] to solve such inverse prob-

lem is called network component analysis (NCA), which is
based on the following three assumptions referred to as NCA
criteria: (i) connectivity matrix A must be full-column rank;
(ii) when an element in the regulatory domain is removed
along with all the output elements connected to it, the con-
nectivity matrix of the resulting network is still of full-column
rank; and (iii) S must have full row rank.

3. A CONVEX PROGRAMMING NCA
FRAMEWORK

Here we develop a new approach to network component anal-
ysis, which is based on the same three NCA criteria but, like
our FastNCA approach, does not suffer the drawbacks of the
original NCA algorithm using ALS and its improved version
with regularization. In addition, this approach, as will be
shown later, can easily incorporate other kinds of prior in-
formation to achieve improved performance.

First we can find the range of X: X̄ = range{X}, and its
null space C = X̄

⊥ such that CT
X̄ = 0. When the measure-

ment is noiseless, i.e., X = AS, then X̄ and C are also the
range and null space of A. When there is noise, we can use a
robust estimation of C through singular value decomposition
(SVD) [11]:

X = UΣV
T , (3)

in which the diagonal matrix Σ consists of singular values
sorted in descending order. From which we can estimate C
as the last N −M columns of U.

Because A is orthogonal to C, this condition can be used
to estimate A by minimizing the Frobenius norm ‖CT

A‖F

subject to the constraints imposed by the prior information on
network connectivity. In other words, we propose to estimate
Â as the solution of the following optimization problem.

min
Â

||CT
Â||F subject to Â(I) = 0, (4)

where I contains the indices where the entries ofA are zeros.
This optimization problem is globally convergent. First,

the cost function is a convex function of the unknown ma-
trix Â. Second, the constraints Â(I) = 0 are linear (hence
convex). Thus, the optimization problem 4 is a convex pro-
gramming problem and contains no local minima. It can also
be solved with very fast interior-point algorithms [12].

4. POSITIVITY CONSTRAINTS

Though the three NCA criteria are enough to estimate the con-
nectivity matrix when there is no noise in the model, addi-
tional constraints, if can be used in the algorithm, will cer-
tainly yield a more robust estimate in practice when noise is
inevitable. The original approach in [9] is not easily amenable
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to the addition of additional constraints and prior knowledges.
Our convex optimization approach, on the other hand, is very
simple for integration with new (convex) constraints and can
often converge faster. This property makes it perfectly suited
to integrate other system knowledge to combat measurement
noises and modeling errors.

In this paper, we assume the prior knowledge that all
nonzero entries of the connectivity matrix are of the same
sign (either all positive or all negative). As long as any spe-
cific transcription factor has the same effect to all genes,
either all positive or all negative, this assumption has sound
biological support [13]. This is because if a transcription
factor regulates the genes negatively, then we can simply
multiply its transcription factor activity (TFA) by −1 to meet
the requirement that the new TFA will have positive effect on
the genes.

Note that the positivity constraints are linear inequalities
and are convex, they are easily incorporated into a modified
convex programming for NCA (named PosNCA) as

min
Â

||CT
Â||F subject to Â(I) = 0, Â(J) ≥ c, (5)

where J contains the indices where entries of A are nonzero,
and c is a constant small positive value. The convex problem 5
can be solved by effective algorithms [12].

5. RESULTS

5.1. Simulation results

Without positivity constraints, simulations (not shown here)
demonstrated that the convex programming of (4) matches
well with the results of FastNCA.

The new PosNCA with positivity constraints is tested
on the chemical simulation data identical to [4]. This is a
hemoglobin spectroscopy data set with a 7× 3 mixing matrix
and a 7× 321 measurement.

Without noise, both the source spectra and the mixing ma-
trix can be perfectly estimated using convex programming
with positivity constraints. Here we study the proposed al-
gorithm under noisy case. The FastNCA method [10] is also
used as a comparison. To this end we add noise to the spectral
measurement to get a signal to noise ratio (SNR) of 9dB. The
true (original) and the estimated source spectra are shown in
in Figure 2, while the (normalized) true and estimated mixing
matrices are compared in Table 1.

The estimated entries of A by FastNCA can be both pos-
itive and negative. Such estimate is unfavorable since all true
entries in A are non-negative. On the other hand, the esti-
mated connectivity matrix by the PosNCA algorithm contains
much closer results as expected. The root mean square er-
ror of the A estimate from PosNCA is 0.3114, much smaller
than that from FastNCA (0.7328). The estimated source spec-
tra shown in Figure 2 also demonstrate that PosNCA is much
more robust.

Table 1. True connectivity matrix and its estimation by Fast-
NCA and the proposed PosNCA algorithm

True FastNCA PosNCA

0.417 1.18 0 -1.78 1.03 0 0.985 1.03 0
2.08 0 1.25 -0.20 0 2.06 1.51 0 1.24

0 1.18 0.25 0 1.24 -0.47 0 1.24 0.670
0.417 1.05 0.25 -0.946 0.966 0.096 1.03 0.969 0.670

1.25 0.921 0 -0.279 1.09 0 0.741 1.09 0
0.833 0 2 1.79 0 1.78 0.741 0 1.75

0 0.658 1.25 0 0.675 0.589 0 0.677 0.670
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Fig. 2. True sources and their estimates using FastNCA and
PosNCA.

5.2. Experimental Results

The time-course Yeast cell cycle microarray data from [14]
are analyzed by our PosNCA with positivity constraints. The
network topology data are from [7]. After trimming, the net-
work has 441 genes and 33 transcription factors in which 11
TFs are cell cycle related. The estimated TFAs for these 11
cell cycle related transcription factors are shown in Figure 3
for the new PosNCA algorithm and the previous FastNCA al-
gorithm, respectively. Only results from the experiment using
the synchronization method by arrest of cdc15 temperature-
sensitive mutant are presented here. It can be seen that the
two methods produce similar results in general. However,
it is clear that the estimated TFAs by the new PosNCA ex-
hibit more cyclic behaviors. Cyclic behavior is expected in
this case since all these transcription factors are cell cycle re-
lated. Therefore, it leads to the reasonable speculation that
the PosNCA results are more reliable than those from other
NCA methods without incorporating these biologically sound
constraints. Still, we stress that such conclusion is to be con-
firmed by further biological studies.
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Fig. 3. Estimated yeast cell cycle related TFAs by (a) the
proposed PosNCA method; and (b) FastNCA

6. DISCUSSION AND CONCLUSION

According to the biological literatures, the microarray data
are in fact considered very noisy. Thus, the development
of PosNCA with positivity constraints is expected to provide
practical advantage against measurement noise by incorporat-
ing biologically sound constraints. The constraints are seam-
lessly integrated into our convex optimization algorithm. As
shown by the yeast cell cycle data analysis, the new PosNCA
algorithm with positivity constraints presents better results
than FastNCA without such constraints.
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