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ABSTRACT
 
Microarray technologies had been used to measure DNA copy 
number data. The copy number represents the relative fluorescent 
intensity level between control and test DNA samples. Variation of 
this number may lead to many genetic diseases such as cancer. 
Unfortunately, the observed copy numbers are corrupted by noise 
due to experimental errors and probes accuracy, making the 
variations hard to detect. Different techniques had been proposed 
to denoise the data and to extract the important feature such as the 
breakpoints from the variant regions. In this paper, we present a 
robust procedure for the analysis of DNA copy number data based 
on maximum likelihood principle using global information of the 
entire data record. We show that Dynamic programming can be 
used to compute the DNA copy number estimates and reduce the 
computational complexity. Furthermore, we employ the Minimum 
Description Length rule to estimate the number of unknown 
parameters. Using simulated and real data, we show that the 
proposed method outperforms other popular commercial software 
and published algorithms. 
 

Index Terms— DNA Copy Number, Comparative Genomic 
Hybridization, Maximum Likelihood rule, Minimum description 
Length, Dynamic programming
 

1. INTRODUCTION 
 
Genetic diseases are characterized by the presence of genetic 
instabilities. Microrray-based Comparative Genomic Hybridization 
(aCGH) is a molecular technology used to measure the genetic 
instabilities in the form of DNA copy number (DCN). It provides a 
high-resolution method to map and measure relative changes in 
DCN simultaneously at thousands of genomic loci in logarithmic 
scale. The ratio reflects the relative fluorescent intensity level 
between a reference (R) DNA as control sample and test (T) DNA 
sample possibly diseased. We expect to see log2(T/R)=0 for 
normal state, log2(T/R)>0 for amplification state, and log2(T/R)<0 
for deletion state. These intensity ratios are informative about 
DNA copy number variations. Due to the logarithmic scale and the 
probes performance, the data can be approximated as a piecewise 
function of short and long intervals with different intensity levels 
that are not uniformly distributed along the genome [10]. 
However, the DCN data corrupted by noise due to experimental 
errors. Different methods have been developed to denoise and to 
detect copy number variations (CNVs) based on statistical models 
and local-smoothing techniques. These methods have advantages 
and disadvantages. We shall discuss these issues in the prior work 
section. 

In this paper, we present an optimal method (for large data 
record) based on Maximum likelihood (ML) principle [4] for the 
analysis of DCN data. Here we use Dynamic Programming (DP) 
[5] to compute the unknown parameters and to reduce the 
computational complexity of our method. Next, we employ the 
Minimum Description Length (MDL) [6] procedure to estimate 
automatically the number of variant regions along the entire data 
which is unknown priori. Unlike the local-smoothing technique, 
the proposed method considers global information from the entire 
data record. 

The paper is organized as follows. Prior work is presented in 
section 2. Section 3 presents DCN data modeling as one-
dimensional piecewise discrete signal and the formulation of the 
ML method using DP for the detection of the variant regions and 
their fluorescent intensity levels along with the estimation of the 
number of these regions using MDL procedure. Comparison study 
between our proposed technique and other efficient methods using 
simulated and real data validated using the experimental molecular 
method quantitative polymerase chain reaction (QPCR) is 
presented in section 4. Finally, conclusions based on the observed 
results are provided in section 5.  
 

2. PRIOR WORK 
 
Various techniques had been proposed for the analysis of the DNA 
copy number variations. Mainly, they fall into two categories: 
statistical based models and smoothing techniques. In this section, 
we briefly review recent and efficient approaches. The Circular 
Binary Segmentation (CBS) presented by [1] is an example of 
statistical models. It allows splitting the data record into smaller 
segments until no more changes are detected in any of the 
segments obtained from the change-points already found. A 
different modeling approach involves the use of Hidden Markov 
Models (HMMs) presented by [2], in which the underlying copy 
numbers are the hidden states with certain transition probabilities. 
They study DCN variations that naturally occur in normal 
populations and using an HMM based approach they compare 
signals for two individuals and seek intervals of four or more 
probes in which DCN data are likely to be different. On the other 
hand, the local-selective smoothing techniques provide alternative 
methods for processing the DCN data that are characterized by 
small and long intervals with of sharp transitions and singularities 
at boundaries edges (breakpoints). The wavelet footprints 
presented by [7] is an example of smoothing technique. It is used 
to obtain a basis for representing the DCN data that is maximally 
sparse and then sparse Bayesian learning is applied to infer the 
copy number changes from the noisy data. Our previously 
proposed algorithm based on discretization of the partial 
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differential equation (PDE), nonlinear diffusion filter (NLDF) [9], 
is another example of local-smoothing techniques. Although the 
techniques are computationally efficient, they use local 
information about the data to detect the variations, which may lead 
to an increase in the false positive rate. Unlike the statistical 
models and the smoothing techniques, in the next section, we 
present our method based on the Maximum likelihood rule to 
detect the DCN variations. It has low computational complexity 
due to the use of DP and it uses global information from the data to 
reduce the false positive rate. 

3. MATHEOD AND MATERIALS 

In this section, we present a technique based on the principle of 
maximum likelihood estimation to extract the important feature of 
the DNA copy number data. It is divided into 3 parts. 1) data 
modeling 2) variant regions estimation 3) Estimation of the 
number of variant regions. 
 
3.1. Data modeling 
 
DNA copy number observations are traditionally modeled as one-
dimensional discrete time series with multilevel and jumps at 
unknown transition times, corrupted by additive white Gaussian 
noise (AWGN) of variance 2 [10]. Specifically, 

y[n]=f[n]+w[n].          n=0,1,2,…, N-1       (1) 
 
where y[n] is the observed DCN data and w[n] is AWGN and f[n] 
is the true DCN signal to be estimated. Then, we define  
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where n0=0<n1<n2< … <nM-1<nM=N and u[n] is the unit step 
function. Here N is the length of DCN data. 
 
3.2. Variant regions estimation 
 
Based on the data assumption of the previous section and assuming 
that we are given the number of variant regions M, the next step is 
to apply the principle of maximum likelihood (ML) to estimate the 
breakpoints and intensity levels corresponding to these regions. 
The ith variant region can be characterized by the PDF pi([y[ni-

1]:y[ni-1]];Ai), where Ai and ni are the unknown parameters 
representing the intensity level and the breakpoint, respectively. 
Moreover, each variant region is assumed to be statistically 
independent of all other regions. Hence, the PDF of the entire data 
record can be written as  
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Taking the logarithm yields 
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where the joint MLE of A=[A1, A2, …, AM]T, n=[n1, n2, …, nM]T are 
found by maximizing (3) or minimizing (4) over n. Here we do not 
assume knowledge of the intensity levels so they must be jointly 
estimated with the breakpoints. Clearly, if the breakpoints ni’s of 
each variant region were known, the MLE of their corresponding 
intensity levels Ai’s would be given by the sample mean of the data 
over each variant region as  
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where n0=0 and nM=N-1. 
In summary, to maximize (3) we need to choose a set of 
breakpoints ni’s, estimate their intensity levels Ai’s, sum the 
logarithm of their PDFs, and repeat the process for all possible set 
of breakpoints to determine which set yield the maximum. The 
difficulty of doing so is the exponential growing rate of the 
number of the possible variant regions M or in general O(NM). To 
solve the problem, we need to minimize the data-dependent term 
J(A, n) over A and n or equivalently to minimize J(Â, n) over n. 
Fortunately, (4) exhibits the Markov property, which allows us to 
apply the technique of  DP to reduce the computational complexity 
to a more manageable level. The computational complexity of DP 
is linearly proportional with the number of variant regions M. The 
mathematical formulation of the problem in terms of DP can be 
summarized as follows. To begin the recursion for minimum J(Â, 
n) over n, we include some restrictions and constraints on the 
breakpoints. Let, 

,1,min)(
1

1
1,0

,...,,
0

121

k

i
iii

Lnn
nnnk nnLI

k
k

                                 (6) 

where 1  n1< n2< … < nk-1  L.  

,,)1( min          

,1,)1( min          

,1,1,min  min          

,1,min  min)(

111

111
1

1

1

1
1

0
,...,2,1

1

1
1

0
,...,2,1

1

1

1

0
21

0
21

LnnI

nnnI

nnnn

nnLI

kkkkn

kkkkk

Ln
n

kkk

k

i
iii

n
nnn

Ln
n

k

i
iii

n
nnn

Ln
nk

k

k
k

k
k
k

k
k
k

          

,],[)1(min)( 1111 1

LnnILI kkkkLnkk
k

    (7) 

 
The recursion process involved in the implementation of the DP 
algorithm to compute the solution assuming a minimum length of 
the variant region of one data sample, can be summarized as 
follows: 
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1) For k=1 (the maximum likelihood for all one-data sample 
regions),  

a) Compute I1[L] for L=0:N-1 using (7) as 
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This is the minimum least square errors when the data record 
[nk-1, L] is used to estimate the mean, where   
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b) Store the result in I1[L]. 
2) For k=2, (the maximum likelihood for all two-data sample 
regions) 

a) Compute I2[L] for L=1:N-1 using (7) as 
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where we already determined I1(n1-1) from the first step 
and the second term is determined using (4) 

b) Store the result in I2[L]. 
c) For each L determine the value of n1 that minimizes I2[L] 
and call it n1(L). 

3) Repeat the same calculations of step 2 for k=3:M-1 and L=k-
1:N-1. 
4) Finally, for k=M, (the maximum likelihood for the last variant 
region where the solution to our original problem occurs) 

a)  Compute IM[L] for L=N-1 using (7) as 
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here, we denote 1ˆMn as the minimum value of nM-1 by as 
n2(N-1). 
b) Using backward recursion, the estimated breakpoints  
are found as 
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c) Using the estimated breakpoints, the estimated 
 intensity level Âi for each variant region is easily found  
using (5). 

 
3.3. Estimation of the number of variant regions 
 
In the previous section, we assumed that the number of variant 
regions M is known and we applied the principle of maximum 
likelihood (ML) to estimate the variant regions breakpoints and 
their corresponding intensity levels. However, the number of 
variant regions of the DCN data is unknown a priori and need to be 
estimated. For this we apply a technique termed the minimum 
description principle (MDL) presented by [3] to estimate the 
number of variant regions before we apply the ML rule to estimate 
the unknown parameters. 
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where mk is the number of estimated parameters or equivalently the 
dimensionality of the unknown parameters i and 

kknnn ˆ...,,ˆ,ˆ,ˆ...,,ˆ,ˆ 21121  is the MLE for the k-variant region 
of the entire data record for k=1, 2, …, K. Here K is the maximum 

number of variant regions chosen by the user. By definition 
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where the first term represents the estimated 
î
 and the second 

term represents the k-1 breakpoints. The first term of (8) 
representing the negative log likelihood function for k variant 
region computed using DP as described in the previous section. 
For this, there is no extra computation required when the number 
of the variant regions is unknown. 
 

4. RESULTS 
 
In this section, we provide comparison study between our 
proposed algorithm and other recent techniques including our 
previously proposed algorithms, to detect the variation regions in 
the DCN data. 
 
4.1. Simulated data 
 
In this section, we provide two simulated example to compare the 
detection capabilities of the proposed methods. The first example 
is a comparison between the proposed methods based on the 
average of the root mean square errors (RMSEs) values of 100 
simulated data sets generated randomly according to real data 
distributions using three different noise levels.  
 

2 MLE NLDF CBS Wavelet HMM 
0.25 0.0421 0.0482 0.0513 0.0637 0.0852 
0.50 0.0835 0.0881 0.0917 0.1051 0.1245 
0.75 0.0945 0.1023 0.1120 0.2116 0.2355 
Table 1. Comparison between the proposed methods based on RMSE’s 
values.  
 
From the results in Table 1, we can observe that the RMSEs values 
of MLE method outperform the proposed methods for detecting 
CNVs by 4 – 15%. 
 
Figure 1 shows another example based on the receiver operating 
characteristic (ROC) curves for simulated data with 2=0.25.  
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Figure 1. Receiver operating characteristic (ROC) curves for the proposed 
methods using simulated data. 
 
Although the ROC curves of Figure 1 show that the MLE method 
is just slightly better than proposed methods, the detection 
performance decreases dramatically for these methods compared to 
MLE as the noise level increases. 
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4.2. Real data (Self-self experiment) 

In this section, we present an experimental study to compare the 
performance of our proposed method, MLE, and CBS algorithm 
based on false positive rate. The same DNA sample is used as the 
test and reference. In other word, we compare the DNA sample 
with itself in the aCGH process to generate the DCN data as 
described in section 1. In the ideal case, the intensity level is 
log2(T/R) =log2(1)=0. However, due to the experimental noise, we 
expect to detect only one segment with relatively small intensity 
level value. Otherwise, the detected segments would be considered 
as false positives. 
 

Array 1 Array 2 Array 3 Chrm 
ID CBS MLE CBS MLE CBS MLE 
7 1 1 1 1 1 1 
10 1 1 3 1 7 3 
15 1 1 3 2 1 1 
17 1 1 3 1 1 1 
22 5 2 3 2 7 3 

Table 2. Representation of the number of the detected CNVs using CBS 
and MLE methods in the three sample arrays for each chromosome. 
 
In comparison with CBS, our purposed method, MLE, detects 
lower number of false positives as shown in Table 2. Details about 
the choice of chromosomes can be found in [11]. 
 
4.3. Validation 
 
In this section, we examine a few CNVs predicted by both the 
segmentation software (CBS) provided by NimbleGen and the 
proposed algorithm and compare their ability to reliably report 
CNVs validated using the experimental molecular method 
quantitative polymerase chain reaction (QPCR) [12] in the lab. 
As shown in Table 2, Quantitative PCR was performed on a set 
of 6 samples, 3 normal controls (C1–C3) and 3 children with 
autism (A1–A3) using oligonucleotide array CGH along with the 
reference sample provided by [11] for the chromosome 7q and 
chromosome 10q segments for nucleotide positions (70061077– 
70061395) and (77927368–77927714), respectively.  
 

Tested  
Region 

Sample 
ID 

CBS 
 

NLDF 
 

MLE 
 

QPCR 

A1 no change no change no change no change
A2 gain gain gain gain 
A3 gain gain gain gain 
C1 no change no change no change no change
C2 no change gain gain gain C

hr
om

os
om

e 
7 

70
06

10
77

–
70

06
13

95
 

C3 no change no change no change no change
A1 loss loss loss loss 
A2 loss loss loss loss 
A3 loss loss loss loss 
C1 loss loss loss loss 
C2 no change gain gain gain 

C
hr

om
os

om
e 

10
 

77
92

73
68

–
77

92
77

14
 

C3 no change loss loss loss 
Table 2. Comparison study of CBS, NLDF, and MLE algorithms for CNV 
detection, validated by QPCR.  
 

In this example, the two tested regions that were determined by 
QPCR to be either deleted (loss) or duplicated (gain) in 6 samples, 
the CBS correctly predicted only 4 of the CNVs. The copy number 
gain and loss found in samples C2 and C3 was not predicted by the 
CBS but is readily predicted by examination of the NLDF and 
MLE methods. Moreover, the absolute mean-values of CNVs 
predicted by MLE are relatively higher than those predicted by 
NLDF. 

5. CONCLUSIONS 
 
In this paper, we investigated the performance characteristics of 
our proposed method. It is based on the Maximum likelihood 
principle to estimate the variant regions breakpoints and their 
corresponding intensity levels. The comparison study shows that 
our method achieves better detection capabilities by considering 
the global information from the entire data record. Dynamic 
Programming used to compute and reduce the computational 
complexity of the proposed method. The robustness of our method 
is due to the use of the Minimum description length procedure for 
estimating the number of variant regions automatically with no 
extra cost. Finally, the experimental molecular method QPCR 
confirms our results. 
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