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ABSTRACT
NMR spectroscopy is a powerful technique used in protein
research for comprehensive functional characterizations, e.g.
structure determination at atomic resolution. Due to the mole-
cular size (typically>1000 atoms), protein NMR spectra con-
tain a large number of signal frequencies. Resolving these
requires high-dimensional spectroscopy. However, when the
number of frequency exceeds three, conventional approaches
start to demand unrealistic long experiment time, and the data
analysis becomes challenging. In this paper we explore a
combination of novel methods: Data from 5D NMR exper-
iments are recorded as a series of 2D projections, which are
then subjected to 2D subband filters and 2D LS-ESPRIT for
estimation of signal parameters. Based on the relations estab-
lished between 5D NMR signals and their 2D counterparts,
projection spectroscopy allows to extract highly similar in-
formation as what would be found in conventional 5D NMR
experiments; however, while the latter would require months
of experiment time, the recording of all necessary projections
can be accomplished within 1-2 days. Preliminary results
show the efficiency of the method with respect to accuracy
and resolution of the parameter estimates as compared with
conventional methods.

Index Terms— multidimensional NMR, projection spec-
troscopy, 2D ESPRIT, 2D subband, frequency estimation, pro-
tein structures.

1. INTRODUCTION

Proteins represent a highly complex class of molecules that
play critical roles in almost every biological process. Their
functional complexity relies on their immense structural va-
riety. Nuclear magnetic resonance (NMR) is a spectroscopic
technique that allows studies on proteins with atomic resolu-
tion: determination of 3D structures, characterization of dy-
namics at various time-scales and of interactions with other
molecules [1]. Due to the size of proteins (often>1000 atoms)
NMR spectra on these macromolecules contain thousands of
signal frequencies, which can only be resolved in multidimen-
sional spectra. However, adding a new dimension dramati-
cally increases the experiment time. For example, with a time

resolution of 64 sampled points in each dimension, a com-
plete L-dimensional spectrumwould require about 64L−1 sec-
onds (>6 months of measurements for L=5!). To overcome
this problem, modern NMR techniques reduce the experiment
time typically by non-uniform sampling, or by projection spec-
troscopy (see review [2]). We shall deal with the latter tech-
nique in this paper.
Another concern is about frequency resolution: signals

with close resonance frequencies need to be resolved. Despite
this high-resolution requirement, FFT-based methods are still
routinely used in multidimensional NMR analysis. Alterna-
tive approaches using maximum entropy or filter diagonaliza-
tion principles are currently restricted to 2-3 dimensions [2].
This paper proposes a novel signal identification approach

for multi-dimensional NMR, where for example 5D NMR
signals are observed via a set of 2D projection spectra (Sec-
tion 2). We then apply a high-resolution parametric estima-
tion method, 2D ESPRIT, to the projected signals. To com-
pensate for the small number of sampled data during the mea-
surement intervals, and the large number of signal frequencies
observed for proteins, a set of 2D subband filters is applied
prior to the frequency estimation (Section 3). For the recon-
struction of 5D NMR signals, the relations between the esti-
mated parameters in 2D projections and the desired frequen-
cies (chemical shifts) of the corresponding atomic nuclei are
expressed as an over-determined set of linear equations (Sec-
tion 4). Tests on synthetic data as well as on experimental 2D
projections of 5D signals show good estimation results with
high frequency resolution (Section 5).

2. MULTIDIMENSIONAL NMR AND PROJECTIONS

Spins in a magnetic field: NMR is about the interaction of
magnetic fields with the spins of atomic nuclei [1]. For spin
1
2 nuclei, the larger population of the lower energy state (out
of two possible states) leads to an equilibrium magnetization
oriented along the magnetic field. This equilibrium can be
disturbed, resulting in a magnetization tilted with respect to
the magnetic field, which then starts to precess with a fre-
quency Ω around it. Observation of the magnetization along
a given direction perpendicular to the magnetic field yields an
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oscillating function in time, which is exponentially dampened
due to relaxation towards the equilibrium. Each nucleus of a
protein has its own precession frequency, and thus one ob-
serves a sum of dampened oscillations, which is called a FID
(Free Induction Decay). Fourier analysis of this FID yields
for each nucleus a precession frequency Ω and a relaxation
rate constant λ.
Multidimensional NMR: A 2D NMR experiment is like a
series of 1D experiments acquired according to the scheme
of Fig.1(a). After a first pulse the magnetizations are allowed
to precess during an evolution time t1. Interaction between
neighboring spins may transfer part of the magnetization from
one nucleus to another. During the acquisition time t2, fol-
lowing a second pulse, a FID is observed with the frequencies
of the nuclei receiving magnetization. Variation of the evolu-
tion time t1 in a series of experiments provides an identifica-
tion of the spins where the magnetizations originate. The re-
sult is a series of FIDmeasurements (Fig.1(b)), whose Fourier
spectrum shows signals connecting the frequencies of neigh-
boring nuclei (Fig.1(c)). Generalizing to L dimensions, the

Fig. 1. (a) Schematic description of a 2D experiment; (b) FID measure-
ments as a function of t1 and t2; c) Fourier spectrum of the signal in (b).

NMR data can be described by a L-dimensional matrix form,

y(t1, · · · , tL) =
K∑

k=1

akfk
1 (t1)⊗fk

2 (t2) · · ·⊗fk
L(tL)+w (1)

where ⊗ is the Kronecker product, ak are amplitudes, t1,
· · · , tL−1 are evolution times, and tL is the acquisition time.
The sum over k reflects the presence of many signal compo-
nents. The vectors f k

l , l = 1, · · · , L, k = 1, · · · , K , con-
tain discrete samples for complex exponentials in the form
e(iΩl−λl)tl with resonance frequenciesΩl, and relaxation rates
λl. The L-D residual matrix w is required due to measure-
ment noise. The vectors f k

l provide an optimal characteriza-
tion of the NMR data set y when the residualw is minimal.
Projection spectroscopy: Consider a modified 5D NMR ex-
periment where a set of 2D projections are recorded instead
of a 5D data matrix. Given the projection angles, a L-D signal
can be related to its 2D projections. For example, a 5D signal
can be projected along the axes Ω3 and Ω4, and also along a
diagonal with respect to the axesΩ1 andΩ2. The new coordi-
nates (ω1, ω2) in the projected 2D plane are now related to the
5D coordinates by ω1 = Ω1 + Ω2 and ω2 = Ω5. Typically,
about 30-50 projectionswith different angles are recorded [3].

Projections are achieved by correlating several evolution
times; when t1 to tL−1 are correlated, the number of dimen-
sions of the projection is two, and (1) becomes [4]

ym(t, tL) =
K∑

k=1

ak

L−1∏
l=1

fk
l (tl, cl,m)⊗ fk

L(tL) + w′m (2)

where ym is a projected NMR data set andm indicates what
type of projection was chosen. The correlated evolution times
t1 to tL−1 yield a single signal dimension, while the detection
time tL is left alone to form the second dimension in the pro-
jection. Thus, the left-hand side of (2) represents now a 2D
data set, where a new time variable t is used to replace the
correlated times t1 to tL−1. The vectors f k

1 to fk
L−1 carry a

second, formal argument that reflects the effect on the vec-
tor of the projection type chosen. Again, the equal sign is
only warranted if noise is taken care of by a residual w ′

m.
The need to consider all 2D projections simultaneously and
the high (∼ 5) dimensionality of the final data make at least
partial automation a necessity.

3. ESTIMATION OF PAIRED FREQUENCIES FROM
2D PROJECTED NMR: 2D-ESPRIT IN SUBBANDS

For each 2D projected NMR with a known projection angle,
(2) can equivalently be described as damped complex expo-
nentials in white noise,

y(m, n) =
K∑

k=1

Akes1km+s2kn + w(m, n) (3)

where sik = αik + jωik, i=1,2, w(m, n) is 2D white noise,
Ak = akejφk is a complex amplitude, ak ∈ R

+ is a shared
amplitude and φk is a shared initial phase, 0 ≤ m ≤ M − 1
and 0 ≤ n ≤ N − 1. To estimate the unknown parame-
ters in (3), FFT-based methods, due to its simplicity, are still
routinely used. The main disadvantage is the low frequency
resolution. On the other hand, parametric methods (e.g. ES-
PRIT [5]) offer high resolution but require more computation.
Applying 2D ESPRIT (Estimation of Signal Parameters Via
Rotational Invariance Techniques) to a projected 2D NMR,
as compared with its 1D version, has several tricky parts. For
example, the two frequencies ω1k and ω2k in each harmonic
term of (3) are coupled. Also, each harmonic term shares
one power and one initial phase value. Therefore, 2D ES-
PRIT should not be implemented as the tensor product. The
relations between matrices concerning the first and second di-
mensions need to be employed for jointly estimating each pair
of frequencies and damping factors. We apply the 2DESPRIT
method in [6] to projectedNMR signals, which is briefly sum-
marized as follows.
Given 2D projected NMR data samples, a Hankel block

matrix containing P × (M −P +1) blocks, is formed for the
1st dimension,

Y1 =

�
����

Y(0) Y(1) · · · Y(M−P )

Y(1) Y(2) · · · Y(M−P+1)

...
...

...
Y(P−1) Y(P ) · · · Y(M−1)

�
���� (4)
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where each block matrix is of sizeQ× (N −Q+1),Y(m) =⎡
⎢⎣

y(m, 0) y(m, 1) · · · y(m, N − Q)
y(m, 1) y(m, 2) · · · y(m, N − Q + 1)
...

...
...

y(m, Q − 1) y(m, Q) · · · y(m, N − 1)

⎤
⎥⎦. Y1 can be

decomposed into signal subspace (the 1st term) and noise sub-
space (the 2nd term) by using the SVD, as follows,

Y1 = US1DS1VH
S1 + UN1DN1VH

N1 (5)
LS ESPRIT can be used to estimate the frequencies and damp-
ing factors as follows

Φ1 = diag1≤k≤K e(α1k+j2πf1k) = T1F1T−1
1

where F1 = U−
S1US1, andUS1 is a matrix by removing the

last Q rows ofUS1, andUS1 is by removing the first Q rows,
U−

S1 is the pseudo inverse ofUS1.
For the 2nd dimension, the 2nd Hankel block matrix Y 2 =⎡
⎢⎢⎣

Y(0) Y(1) · · · Y(N−Q)

Y(1) Y(2) · · · Y(N−Q+1)

...
...

...
Y(Q−1) Y(Q) · · · Y(N−1)

⎤
⎥⎥⎦, where the block ma-

trix isY(n) =

⎡
⎢⎣

y(0, n) y(1, n) · · · y(M − P, n)
y(1, n) y(2, n) · · · y(M − P + 1, n)
...

...
...

y(P − 1, n) y(P, n) · · · y(M − 1, n)

⎤
⎥⎦.

Exploiting the paired sinusoidal frequency relations in two
dimensions, computing the SVD of Y2 is no longer needed.
Using the following relation,
Φ2 = diag1≤k≤K e(α2k+j2πf2k) = T2F2T−1

2 = T1F′2T
−1
1

where
F′2 = (E1Us1)−(E1Us1)
E1 =

∑Q
k=1

∑P
l=1 EQ×P

k,l ⊗EP×Q
l,k

(6)

and EQ×P
k,l is a matrix of size (Q × P ) with value 1 for k, l

element and 0 otherwise.
A common transform T can be used to diagonalize two

matrices F1 and F′2, and using the linear combination,
βF1 + (1− β)FT

2 = T−1DT (7)
where β is a scalar value.
Subband filters: The rank of the data matrix (or, the Hankel
block matrix) used by the 2D ESPRIT is equal to the rank
of the signal subspace plus the noise subspace. This requires
that the observation data window size P and Q in the Hankel
block matrices satisfy:

K ≤ P ≤ M −K + 1, K ≤ Q ≤ N −K + 1 (8)
However, due to the short length of our measured 2D pro-
jection signals, (8) is not satisfied. One solution is to re-
measuring these NMR projections with higher sampling rate,
thus longer data. However, this is not always easy as it re-
quires the use of NMR equipment, coolingmaterials and labo-
ratory experts. To tackle this problem, the projected 2D NMR
signal is first split into a set of subbands by using a set of
2D subband filters (e.g. using linear-phase Parks-McClellan
equiripple FIR filters). The bandwidth of subband filters are

selected such that (8) is satisfied to the subband filtered pro-
jection signal.
Computing powers and initial phases: Once the frequen-
cies and damping factors are estimated, the powers and initial
phases of sinusoids can be estimated by using the LS esti-
mation by plugging in the estimated frequencies and damp-
ing factors as the true values. Consider a simple case of 1D
signal y(n) =

∑K
k=1 Akeskn + w(n) as an example, or its

vector form Y = Hθ + W, where sk = −αk + jωk. The
LS criterion can be formed as J(A, θ) = (Hθ +W)T (Hθ +
W), where θ = [A1 · · ·AK ]T = [a1e

jφ1 · · · aKejφK ]T , and

H =

⎡
⎢⎢⎣

1 · · · 1
es1 · · · esK

...
. . .

...
es1(N−1) · · · esK(N−1)

⎤
⎥⎥⎦. The LS solution is θ̂ =

(HTH)−1HTY. Estimation in the 2D case is performed as
follows. First, a set of 1D signals are obtained from the 2D
signal by setting e.g. y(m, 1), · · · , y(m, N). Each data se-
quence can be considered as one realization of the measured
signal. Parameters can hence be estimated by applying 1D
LS estimation followed by the ensemble averaging. Table 1
summarizes the algorithm.

Giving 2D FID measurements y(m, n), sizeM × N , from a 2D
projection, and assuming y(m, n) consists ofK sinusoids in white noise:
1. Split 2D measured signal by applying 2D subband filters:
1.1. Applying subband filters (e.g. Parks-McClellan equiripple FIR

filter) to 2D signal y(m, n);
2. Estimation of paired frequencies and dampings by 2D ESPRIT:
2.1. Create a Hankel block matrixY1 of size P × (M − P + 1) related

to the observation window P × Q for the first dimension using (4);
2.2. SVD decompose Y1 using (5);
2.3. ObtainUs1 by removing the last Q rows, andUs1 by removing
the 1st Q rows fromUs1.

2.4. Compute F1 = U−S1US1.
2.5. Compute F′2 by using (6).
2.6. Compute T from the linear combination of F1 and F′2 using (7);
2.7. Diagonalize F1 and FT

2 from a same transform matrix T, using (7);
2.8. Find frequencies and damping factors from the diagonal of

Φ1 = TF1T−1 and Φ2 = TF′2T−1.
3. LS estimation of powers and initial phases of sinusoids:
3.1. Estimate powers and initial phases for y(m, 1), · · · , y(m, N)

using 1D LS formulation;
3.2. Apply ensemble average to obtain 2D estimates.

Table 1. Pseudo Algorithm.

4. RELATIONS BETWEEN PARAMETERS IN 2D
PROJECTIONS AND IN L-D SIGNALS

For each signal from a 2D projection, the above analysis pro-
vides frequencies ωr that are linear combinations of the de-
sired frequencies (chemical shifts) Ωl of the atomic nuclei
l = 1, · · · , L. The relation between observed and true fre-
quencies can be expressed as a set of linear equations:

AΩ ≈ ω (9)

where Ω is a vector of size L containing the desired chemical
shift frequencies, ω is a vector of size R containing the signal
frequencies from all projections, and A is a matrix of size
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R × L (rank L), describing linear relations according to the
selected projections and their angles. Due to the presence of
noise, the number of projections should exceed the theoretical
minimum, i.e. R > L, and determination of ω according to
(9) is an over-determined problem. Since the matrixA cannot
be inverted, a pseudo inverse A− is obtained from the SVD
ofA (i.e.,A = UDVT ),A− = VD−1UT . It can be shown
that the optimal estimation of Ω̂ in (9) is

Ω̂ = A−ω (10)

5. SIMULATION AND EXPERIMENTAL RESULTS

Tests on simulated data: The 2D ESPRIT algorithm was
first tested on several synthetic data. As an example, Fig.2
shows the the ground truth frequencies, the estimated fre-
quencies from 2D ESPRIT, and the equal energy contours
from 2D FFT spectrum for a synthetic signal consisting of
33 sinusoids in white noise. From Fig.2 one can see that 2D
ESPRIT has yielded more accurate frequency estimation with
higher frequency resolution as compared with that in the FFT.

Fig. 2. 2D ESPRIT vs. 2D FFT: estimation of the frequencies from syn-
thetic 2D signals with 33 damped sinusoids in white noise. Red: ground
truth; Green +: from 2D ESPRIT; Blue: equal energy contours from 2D FFT.

Analysis of experimental 2D projections: From a set of 30
projections, resulting from two 5D experiments, the spectrum
corresponding to a 15N-HSQC was chosen as a test example.
The data were collected for a 2mM solution of the protein
ubiquitin on a 600 MHz instrument at 303 K [3]. Each pro-
jection requires about 30 minutes of measurement time. For
the parameter estimation, the data file is arranged as a matrix
of size M=60 and N=955. The estimated number of sinu-
soids isK=76 (derived from the protein size). SinceM = 60
is too short, which limits the use of the 2D ESPRIT, subband
filters are used to split the 2D signal into subbands, each of
which containing a smaller number of sinusoids. After that, a
2D ESPRIT is applied to each subband filtered signal. Fig.3
shows the estimated frequencies from a lowpass filtered 2D
NMR projected signal, where a 1D lowpass filter was applied
along the direction of the first frequency axis ω1. For compar-
isons, the equal energy peak contours of the corresponding
FFT-spectrum are also included. Observing the results ob-
tained from the measured data in Fig.3, one can see that 2D

ESPRIT has resulted in estimated frequencies agreeing well
the FFT spectral peak contours. Further, the former clearly
shows high frequency resolution hence able to resolve fre-
quencies that a conventional FFT spectrum cannot separate.

Fig. 3. Estimated frequencies from the lowpass filtered signal of a 2D NMR
projection data set. Red +: the estimated frequencies from the 2D ESPRIT;
Blue curves: equal energy contours of the peaks in the FFT spectrum.

6. CONCLUSION
This paper employed a combination of methods for improving
the estimation of resonance frequencies of 5D NMR through
the use of projection spectroscopy, where the most commonly
used analysis methods are still FFT-based. Multiple 2D pro-
jections of a 5D NMR signal from a protein were measured
and analyzed. Tests have been conducted on synthetic data
as well as projected NMR measurements by applying sub-
band filters and 2D parametric estimation. Results showed
clear improvement of estimation accuracy with enhanced fre-
quency resolution. Mathematical formulations for reconstruct-
ing the desired frequencies (i.e., the chemical shifts) of atomic
nuclei from the estimated frequencies in multiple 2D projec-
tions are also given. Further NMR measurements are planned
for extensively testing the proposed method and evaluating
the performance.
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