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ABSTRACT

We consider the parametric analysis of frequency-domain optical co-
herence tomography (OCT) signals. A Monte Carlo (Gibbs sampler)
detection-estimation method for determining the depths and reflec-
tion coefficients of tissue interfaces (reflective sites in the tissue) is
proposed. Our method is blind since it estimates the instrumentation-
dependent “fringe” function along with the tissue parameters. Spar-
sity of the detected interfaces is enforced by an impulse detector and
a modified Bernoulli-Gaussian prior with a minimum distance con-
straint. Numerical results using synthetic and real signals demon-
strate the excellent performance and fast convergence of our method.

Index Terms— Optical coherence tomography, Bayesian analy-
sis, Gibbs sampler, Monte Carlo method, detection, estimation,
Bernoulli-Gaussian model, blind deconvolution.

1. INTRODUCTION

In optical coherence tomography (OCT), the depth-dependent reflec-
tion properties of tissue are measured via an optical interferome-
ter [1]. In the case of the retina (or other layered tissues), the OCT
signal transformed to the time domain can be approximated by the
convolution of a sparse impulse train (the “retina function,” abbrevi-
ated RF) with a pulse (the “fringe”). Each RF impulse corresponds
to a tissue interface (reflective site in the tissue), while the fringe de-
pends on the instrumentation and determines the imaging resolution.

Here, we propose a Monte Carlo (Gibbs sampler) detection-esti-
mation method for determining the locations and amplitudes of the
RF impulses. These correspond to the depths and reflection coef-
ficients, respectively, of the tissue interfaces and are of clinical rel-
evance. Our method is blind in that the fringe need not be known
but is estimated along with the RF parameters. It is inspired by the
Gibbs sampler based blind deconvolution method proposed for seis-
mic signals in [2], but improves on that method due to its much faster
convergence and lack of spurious impulses. These improvements
are achieved by the use of a dedicated impulse detector, a sparsity-
enforcing modified Bernoulli-Gaussian prior incorporating a mini-
mum distance constraint, and a parametric model for the fringe.

Two alternative methods that have been proposed for OCT are the
SMLR detection method [3, 4] and a cepstral deconvolution method
[5]. The SMLR method requires the fringe to be known and may
converge to a local maximum of the posterior (this does not happen
with Gibbs sampler methods). The cepstral method does not per-
form impulse detection; furthermore, it does not consider additive
measurement noise and does not compensate for modeling errors.

This paper is organized as follows. The signal model and prior
distributions are discussed in Sections 2 and 3, respectively. Sec-
tion 4 describes the Monte Carlo detection-estimation method. The
distributions used by the Gibbs sampler are developed in Section 5.
Finally, numerical results are presented in Section 6.

This work was supported by the FWF project “Statistical Inference”
(S10603-N13) within the National Research Network SISE.

2. SIGNAL MODEL

Convolution model. The sampled signal measured by a frequency-
domain OCT device [1] can be modeled as (cf. [5])

Ỹl =
˛̨
1+Rl

˛̨2
Fl + Nl =

`
1 + Rl + R∗l + |Rl|

2´Fl + Nl ,

where Rl and Fl are the Fourier transforms of, respectively, the RF
and the fringe and Nl is measurement noise (not included in [5]).
The component 1 (caused by the interferometer’s reference branch)
is suppressed, along with systematic modeling errors, by a standard
preprocessing procedure in which the average of the signals of many

local depth scans is subtracted from Ỹl. Neglecting |Rl|
2 (� |Rl|)

and performing an inverse discrete Fourier transform then yields the
time-domain signal yk = (rk + r∗−k) ∗ fk + nk, where ∗ denotes
convolution. The component rk ∗ fk is effectively causal and does
not overlap with the anticausal component r∗−k ∗ fk. Retaining a
causal block of K samples, we obtain the convolution model

xk = rk ∗fk + nk , k = 0, . . . , K−1 .

Retina function. The RF rk consists of irregularly spaced im-
pulses with complex amplitudes. This can be modeled as

rk = akbk , k = 0, . . . , K−1 ,

where the “impulse indicator” bk∈{0, 1} indicates the impulse posi-
tions and ak∈C describes the impulse amplitudes for those k where
bk = 1 (the ak are irrelevant elsewhere). Our goal is to detect the
impulse positions (i.e., the k for which bk = 1) and to estimate the
corresponding amplitudes ak, for an unknown fringe fk .

Denoting by x, r, b, a, f , and n the length-K vectors correspond-
ing to the sequences xk, rk, bk, ak, fk , and nk , respectively, the
signal xk = (akbk)∗fk + nk can be written as

x = Fr + n = FBa + n , (1)

where F � toep(f) is the K×K Toeplitz matrix generated by f and

B � diag(b) is the K×K diagonal matrix with main diagonal b.

Fringe. We represent the fringe f by an expansion

f =
LX

l=1

αl hl = Hαα , (2)

where the length-K vectors hl, l = 1, . . . , L correspond to the first

L (�K) Hermite functions, H � (h1 · · ·hL), and αα � (α1 · · ·
αL)T. The Hermite functions cover an elliptic time-frequency re-
gion [6, 7]. Their number L and time-frequency scaling are chosen
depending on the effective duration and bandwidth of the fringe.

Defining the K×K Toeplitz matrix R � toep(r), we have Fr =
toep(r)f = Rf , so that (1) can be written as

x = Rf + n = RHαα + n . (3)
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3. STOCHASTIC MODEL

The Bayesian methodology requires prior distributions for all quan-
tities to be estimated or detected. In particular, we use a modified
Bernoulli-Gaussian prior for the RF rk = akbk, as described next.

Impulse indicator. To develop the prior of the impulse indicator
vector b, we first consider all bk ∈ {0, 1} to be independent and
identically distributed (iid) Bernoulli variables. This corresponds to

the auxiliary probability mass function (pmf) p̃(b) =
QK−1

k=0 p̃(bk),
with p̃(b) = p0 for b=0 and p̃(b) = 1−p0 for b=1. However, to ex-
clude closely spaced impulses (which are not physically relevant and
would lead to spurious impulses in the detection result), we enforce
a minimum distance dmin between any two nonzero entries bk = 1
and bl =1. Let C be the set of all b satisfying this minimum distance
condition, and let IC(b) be 1 if b ∈ C and 0 otherwise. Then, the
prior pmf of b is chosen (up to an irrelevant normalization) as

p(b) ∝ IC(b) p̃(b) =

j
p̃(b) , b∈C

0 , otherwise.

Note that the bk are no longer statistically independent.

Amplitudes. The amplitudes ak are modeled as iid zero-mean cir-
cularly complex Gaussian, i.e., the prior probability density function

(pdf) of a is p(a) = CN (0, σ2
aI), with σ2

a suitably chosen. Thus,
|ak| is Rayleigh-distributed, which means that amplitudes around
zero have a small probability. This helps avoid small impulses (which
are insignificant and typically artifacts) in the detection result.

Fringe coefficients. The fringe coefficient vector αα in (2) is mod-

eled as p(αα)= CN (0, σ2
αI).

Noise. The noise is modeled as p(n)= CN (0, σ2
nI). Its variance

σ2
n is treated as a random hyperparameter and estimated. The prior

of σ2
n is chosen as an inverse gamma distribution [8]:

p(σ2
n) = IG(ξ, η) =

ηξ

Γ(ξ)
(σ2

n)−ξ−1e−η/σ2

n u(σ2
n) (4)

(u(x) is the unit step function). This is a conjugate prior of the
Gaussian likelihood function [8], which will be useful in Section 5.

Joint prior and posterior. The quantities b, a, αα, and σ2
n to be

detected or estimated are modeled as independent. Thus, their joint

prior is p(b,a, αα, σ2
n) = p(b) p(a) p(αα)p(σ2

n), with p(b) etc. as

discussed above. Using (1), the likelihood function p(x|b,a, αα, σ2
n)

is obtained by setting n = x−FBa in p(n)= CN (0, σ2
nI):

p(x|b,a, αα, σ2
n) =

1

(πσ2
n)K

exp

„
−
‖x−FBa‖2

σ2
n

«
, (5)

with F = toep(Hαα) and B = diag(b). For the joint posterior of b,

a, αα, and σ2
n, we then obtain p(b,a, αα, σ2

n|x) ∝ p(x|b,a, αα, σ2
n)

× p(b,a, αα, σ2
n).

4. MONTE CARLO DETECTION-ESTIMATION METHOD

4.1. Detection of Impulses

Two optimum methods for detecting the impulse sequence b=(bk)
are the maximum a posteriori (MAP) sequence or vector detector,

b̂MAP(x) � arg max
b∈{0,1}K

p(b|x) = arg max
b∈C

p(b|x) , (6)

and the MAP component detector, also known as “maximum poste-
rior marginal/mode (MPM) detector” (e.g., [9]),

b̂k,MAP(x) � arg max
bk∈{0,1}

p(bk|x) , k = 0, . . . , K−1 . (7)

The first minimizes the sequence error probability P{b̂ �=b}, while
the second minimizes the component error probability P{b̂k �=bk}.

Monte Carlo detectors. Both p(b|x) and p(bk|x) can be derived

from the posterior p(b,a, αα, σ2
n|x) by marginalization. This being

computationally prohibitive, we use a Monte Carlo approach, i.e., we

generate a sample S � {(b,a, αα, σ2
n)(m)}m=1,...,M of realizations

(b,a, αα, σ2
n)(m) from p(b,a, αα, σ2

n|x) (as discussed in Section 5)
and calculate a detector from this sample.

Using the sample S , marginalizations are easily done by ignoring

the undesired components of each realization (b,a, αα, σ2
n)(m). In

particular, let q(b) denote the relative multiplicity of b∈{0, 1}K in
S (i.e., the number of occurrences of b in S , normalized by |S|=

M ). Then q(b) converges to p(b|x) underlying b̂MAP(x) in (6) as
M increases. Therefore, the sample-based sequence detector

b̂S(x) � arg max
b∈{0,1}K

q(b) = arg max
b∈B

q(b) ,

where B is the set of b∈{0, 1}K contained in S (i.e., for which q(b)

�= 0), approximates b̂MAP(x) for M sufficiently large. (Note that

b̂S(x) is simply the b occurring most often in S .) However, the
number |B| ≤ |S| = M of different b contained in S is usually
much smaller than the number |C| of hypotheses b∈C among which

b̂MAP(x) selects the best. Hence, q(b) will be quite different from

p(b|x), and thus b̂S(x) may be different from b̂MAP(x).
This problem is avoided by the sample-based version of the MAP

component detector (7), which is given by

b̂k,S(x) � arg max
bk∈{0,1}

q(bk) , k = 0, . . . , K−1 .

Here, q(bk) is the relative multiplicity of bk, i.e., the number of b’s
in S that have the given bk ∈ {0, 1} at position k, normalized by
M . The limited sample size is no problem here since there are only

two possible hypotheses for bk. However, b̂k,S(x) has certain prob-
lems, too. For example, suppose that all realizations in S contain an
impulse in a fixed small interval K but q(bk) < 1/2 for all k ∈ K,
i.e., there is no k ∈ K at which the majority of realizations has an
impulse. Then b̂k,S(x) = 0 for all k ∈K, which is clearly counter-
intuitive since the empirical probability that there is no impulse inK
is zero (all realizations in S have an impulse in K).

The proposed block detector. We therefore use a MAP block de-
tector that is a compromise between the sequence and component
detectors and largely avoids their problems. The sequence b is split
into J nonoverlapping blocks ββj of generally different lengths Kj ,
j = 1, ..., J , and each block is detected independently of the others:

β̂βj,MAP(x) � arg max
ββj∈{0,1}

Kj

p(ββj|x) = arg max
ββj∈Cj

p(ββj |x) .

(8)

Here, p(ββj|x) is a marginal of p(b|x) and Cj is the set of all ββj ∈
{0, 1}Kj satisfying the minimum distance condition. The sample-

based version of β̂βj,MAP(x) is given by

β̂βj,S(x) � arg max
ββj∈{0,1}

Kj

q(ββj) ,

where q(ββj) is the relative multiplicity of ββj in S . The overall de-

tection result is then b̂
B
S (x) �

`
β̂β

T

1,S(x) · · · β̂β
T

J,S(x)
´T

.
To avoid problems similar to those of the component detector, the

block lengths Kj should not be chosen too small. On the other hand,
each Kj should be small enough so that q(ββj) is a good approxima-
tion to p(ββj |x); this requires that the number of hypotheses ββj∈Cj

in (8) is much smaller than M . To define the block intervals, we
propose to first calculate q(bk =1) for k = 0, . . . , K−1. The result-
ing sequence consists of “zero intervals” and “nonzero intervals.”
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Within zero intervals, q(bk = 1) ≡ 0, and thus the sample-based
block detector will always yield the zero block. Nonzero intervals,
on the other hand, have q(bk = 1) > 0 at all positions. They can be
split into smaller intervals if they are too large, or joined with neigh-
boring intervals if they are too small. However, we often obtained
good results by directly using them as blocks.

4.2. Estimation of Amplitudes, Fringe, and Noise Variance

For estimating the complex amplitudes ak at the positions k where
an impulse was detected, we ideally use the minimum mean square
error (MMSE) estimator of ak under the condition bk =1,

âk,MMSE(x) � E{ak|x, bk=1} =

Z
ak p(ak|x, bk=1) dak .

Calculating p(ak|x, bk =1) by marginalization of p(b,a, αα, σ2
n|x)

is not feasible, so we use the sample-based approximation

âk,S(x) �
1

|Mk|

X
m∈Mk

a
(m)
k .

Here, a
(m)
k is the amplitude of realization (b,a, αα, σ2

n)(m) at posi-

tion k (i.e., the kth entry of the a contained in (b, a, αα, σ2
n)(m)) and

Mk is the set of indices m of all realizations with b
(m)
k =1. We cal-

culate âk,S(x) only at those k where an impulse was detected, i.e.,

where
ˆ
b̂

B
S(x)

˜
k
=1 (this also guarantees thatMk is nonempty).

Finally, sample-based versions of the MMSE estimators of the

fringe coefficient vector αα and the noise variance σ2
n are given by

α̂αS(x) �
1

M

MX
m=1

αα
(m), cσ2

n,S(x) �
1

M

MX
m=1

(σ2
n)(m),

where αα(m) and (σ2
n)(m) are, respectively, the αα and σ2

n of realiza-

tion (b, a, αα, σ2
n)(m).

5. GIBBS SAMPLER

For drawing a sample S = {(b,a, αα, σ2
n)(m)}m=1,...,M from the

joint posterior p(b,a, αα, σ2
n|x), we use the Gibbs sampler [10]. As-

suming a generic multivariate distribution p(z), the Gibbs sampler

draws a sample {z(m)}m=1,...,M from p(z) in a recursive fashion.

A new realization z
(m+1) is obtained from the current realization

z
(m) as follows. Each entry z

(m+1)
k is drawn from the univariate

distribution p(zk|z∼k), where z∼k denotes z without entry zk and
the values used in the condition z∼k are the most recent ones (i.e.,
in general, some of them have already been updated). The stationary
distribution of the resulting Markov chain z

(m), m = 0, 1, . . . con-

verges to p(z) as M→∞ [10]. Thus, the sample {z(m)}m=1,...,M

will represent p(z) if it is large enough and if an initial “burn-in pe-
riod” (which is affected by the initialization z

(0)) is removed.
The univariate distributions p(zk|z∼k) can be derived from the

likelihood function (in our case (5)) and the priors (see Section 3).
Because of space limitations, we will present them without proof.

Amplitudes. Using the fact that p(ak) is a conjugate prior [11],

we obtain p(ak|x,b,a∼k, αα, σ2
n) = CN (μ, σ2), with

μ =
σ2 bkf

H
k (x−FB∼ka∼k)

σ2
n

, σ2 =

„
b2
k‖fk‖

2

σ2
n

+
1

σ2
a

«−1

.

(9)

Here, fk denotes the kth column of F and B∼k denotes B without
the kth column.

Impulse indicator. For bk, we find

p(bk|x,b∼k,a∼k, αα, σ2
n) = C σ2 e|μ|

2/σ2

p(b) , (10)

with μ and σ2 as defined in (9). The constant C is easily calcu-
lated since bk ∈ {0, 1}. However, using (10), many Gibbs sampler
iterations are needed to obtain changes in b. This is because due
to the minimum distance condition, bk is almost determined by its
neighborhood. (A similar phenomenon was observed in [12, 13].)
We will thus use a modified distribution whose condition ignores
not just bk but all bk′ within a neighborhood of length dmin of po-
sition k, on the side at which we sample. This neighborhood is

defined by K � [k, kmax] with kmax � min{k + dmin−1, K} (we
assume that the bk′ for k′ < k have already been sampled). We

then use the Gibbs sampler with p(bk|x,b∼k,a∼k, αα, σ2
n) replaced

by p(bk|x,b∼K,a∼K, αα, σ2
n), where, e.g., b∼K denotes b with-

out the entries indexed by K. This latter pmf can be calculated

as p(bk|x,b∼K,a∼K, αα, σ2
n) =

P
ββ
∼k

p(ββ|x,b∼K,a∼K, αα, σ2
n),

where ββ � (bk bk+1 · · · bkmax )
T comprises all bk′ indexed by K.

Note that there are only dmin+1 different ββ because inK there can be

at most one impulse. One can show that p(ββ|x,b∼K,a∼K, αα, σ2
n)

is still given by expression (10), however with

μ =
σ2ββH

F
H
K (x− F∼KB

∼K
a∼K)

σ2
n

σ2 =

„
ββH

F
H
KFKββ

σ2
n

+
1

σ2
a

«−1

.

Here, FK consists of the columns of F indexed by K, F∼K denotes
F without these columns, and B

∼K � diag(b∼K).

Fringe. Because αα is Gaussian, it can be treated as one param-
eter in the Gibbs sampler without incurring excessive complexity.

The conjugate prior property yields p(αα|x,b,a, σ2
n) = CN (μ,Σ),

where (recall R = toep(r) and (3))

μ =
ΣH

H
R

H
x

σ2
n

, Σ =

„
H

H
R

H
RH

σ2
n

+
I

σ2
α

«−1

.

The time-shift ambiguity inherent to the convolution model is re-
solved as discussed in [2].

Noise variance. Since p(σ2
n) in (4) is a conjugate prior, we obtain

p(σ2
n|x,b,a, αα) = IG

`
ξ + K, η + ‖x−FBa‖2

´
.

6. NUMERICAL RESULTS

We next demonstrate the performance of our method and compare
it with that of the Gibbs sampler based blind deconvolution method
of [2], hereafter referred to as “reference method” (RM).

Synthetic signals. We simulated 100 RFs rk = akbk and corre-
sponding noisy time-domain signals xk = rk ∗ fk + nk, using a
fixed fringe with Gaussian shape and height 1 (see the right-hand

plots in Fig. 1(b), (c)), a fixed noise variance σ2
n, and pmf/pdf pa-

rameters p0 = 0.96, dmin = 12, and σ2
a = 7.74 · 10−5. We chose σ2

n

to obtain an SNR (‖Fr‖2/‖n‖2) of 16 dB. Both methods used the

true p0, dmin, σ2
a and, in (4), η = 0.5 and the value of ξ for which the

mean η/(ξ−1) equals the true σ2
n. We used L=7 Hermite functions

in our method and a fringe length of 33 in the RM.
Fig. 1 shows a typical example. While the results of both methods

are seen to be satisfactory (with some amplitude estimation errors
and spurious impulses in the RM result), our method requires only
three iterations to achieve a better result than does the RM with 4000
iterations (the number of iterations used in [2]). Since one iteration
of our method is similarly complex as four iterations of the RM, our
three iterations correspond to about 12 RM iterations. However, the
RM results after 12 iterations (not shown) are still extremely poor.
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Fig. 1. Results for a synthetic signal: (a) Signal, (b) RF estimate
(left) and fringe estimate (right) obtained with the proposed method
after three iterations, (c) RF estimate (left) and fringe estimate (right)
obtained with the reference method after 4000 iterations. The circles
indicate the true impulse positions and amplitudes. The dashed lines
in the right-hand plots (almost coinciding with the solid lines) indi-
cate the true fringe function. Real parts are shown throughout.

Fig. 2 shows the empirical normalized mean-square error (NMSE)
of RF estimation versus the number of iterations. The empirical

NMSE is the average (over 100 realizations) of ‖r̂− r‖2 normal-

ized by the average of ‖r‖2. In our method, we resynthesized r̂ from
the detected impulses and estimated amplitudes. (Note that the RM
directly yields r̂.) The number of iterations equals the total length of
the Markov chain. Out of each chain, the last 25% of the iterations
were used to constitute the sample. It is seen that the RM converges
very slowly, whereas our method achieves an NMSE below −20 dB
after only three iterations. We note that an improvement of the RM
resulting in faster convergence was proposed very recently [13].

Real OCT signal. We applied the two methods to a real OCT sig-
nal measured by a frequency-domain OCT device (frequency range
320.7–425.7 THz) scanning a human retina. The parameters (cho-
sen for best performance) were p0 = 0.85, dmin = 7, σ2

a = 3.91 ·
10−5, SNR=26dB, and L=30 for our method and p0 =0.973, σ2

a =
8.79 · 10−5, SNR = 16dB, and fringe length 33 for the RM. Fig.
3(a) shows a segment of the time-domain signal corresponding to a
length of 530μm. From Fig. 3(b),(c), it is seen that the RF estimate
obtained with our method after 20 iterations is sparse whereas that
obtained with the RM after 4000 iterations is not. The two fringe
estimates are quite different; a validation of these estimates based on
fringe measurements will be part of our future work.

7. CONCLUSION

We proposed a Gibbs sampler method for inferring the depths and
reflection coefficients of tissue interfaces from signals measured by
frequency-domain OCT instrumentation. Knowledge of the instru-
mentation-dependent fringe function is not required. Our method
enforces sparsity of the tissue interfaces by using an impulse detector

1000 2000 3000 4000 2 4 6 8 10

5

0

-5

-10

-15

-20

-25

Number of iterations

E
m

p
.N

M
S

E
[d

B
]

Fig. 2. Empirical NMSE of the RF estimate (dashed line: proposed
method, solid line: reference method) versus the number of itera-
tions. Left: all 4000 iterations, right: the first 10 iterations.

200 400 600 800 -20 0 20

(a)

(b)

(c)

Fig. 3. Results for a real OCT signal: (a) Signal, (b) RF estimate
(left) and fringe estimate (right) obtained with the proposed method
after 20 iterations, (c) RF estimate (left) and fringe estimate (right)
obtained with the reference method after 4000 iterations. Real parts
are shown throughout.

and a modified Bernoulli-Gaussian prior with a minimum distance
constraint. Numerical results demonstrated significant performance
gains compared to the blind deconvolution method proposed in [2].
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