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ABSTRACT

The aim of this study is to facilitate the home follow-up of patients
treated with cardiac implantable devices. A new procedure to syn-
thesize 12-lead ECG from intracardiac EGM is proposed. It is based
on the estimation of: (i) a 3D representation of the cardiac elec-
trical activity both for ECG (VCG) and EGM (VGM), and (ii) the
transfer function between the VGM and the VCG. The extraction of
VCG and VGM is performed by comparing four different algorithms
based on PCA and ICA, whereas the non-linear transfer function
between VCG and VGM is estimated using a specific neural net-
work. Results demonstrate the effectiveness of the proposed method
in comparison with our previous work. Indeed, the correlation co-
efficients, between the real ECG and the synthesized ECG, lie be-
tween 0.78 and 0.99, whereas correlation coefficients of the previ-
ous method (combining PCA and linear Wiener filter) lie between
0.6 and 0.94.

Index Terms— Surface ECG, Intracardiac EGM, ICA, PCA,
Neural Network.

1. INTRODUCTION

Patients treated with Cardiac Implantable Devices (CIDs), such as
Bi-ventricular Pacemakers (BivP) and Defibrillators (BivD) used in
the cardiac resynchronization therapy require regular hospital vis-
its to perform patient’s follow-up, to monitor whether the CID is
working optimally and, eventually, to modify the pacing parameters.
Current developments have for objective to propose accurate meth-
ods for remote follow-up of these patients so as to reduce the health
care costs. Since the physician consider the surface ElectroCardio-
Gram (ECG) as the reference signal for the analysis of the cardiac
activity and since the CIDs only provide intrathoracic ElectroGrams
(EGM), the aim of this paper is to synthesize a standard set of 12-
lead ECG from EGM data in order to provide a less expensive and
less time-consuming setup for monitoring the patient’s cardiac elec-
trical activity, that could be useful in a telemedecine application. It
is worth noting that the EGM provides local information on the elec-
tric activity of a group of cardiac cells, and, up to now to our knowl-
edge, the cardiac arrhythmias recognition based on EGM is still an
unsolved problem.

Several methods dealing with the synthesis of the 12-lead ECG
have been reported, including linear and non-linear filtering [1–5],
but these methods share some limitations. Those based on a few sur-
face ECG leads [3, 4] require the acquisition of clinical data either
in an attended laboratory setting or by using an ambulatory electro-
cardiography device (Holter monitor). In the method given in [2]
the 12-lead ECG is synthesized by using only one EGM lead, which
makes the result strongly dependent on the chosen EGM. Regarding
the method proposed in [1], the authors reconstruct the 12-lead ECG
from a set of EGM leads by using linear filtering. However, in a

real application, noise or artifacts generated by electrode displace-
ment, changes on the patient’s body position or cardio-respiratory
interactions may influence the relationships, over time, between the
EGM and the surface ECG. Thus stochastic and non-linear phenom-
ena crop up, and time series dynamics cannot be robustly described
using classical linear filtering. In order to overcome these shortcom-
ings, this paper presents a novel procedure to synthesize the 12-lead
ECG from a set of intracardiac EGM, acquired from CID electrodes.
This procedure is based on: (i) the extraction of a three dimen-
sional (3D) representation of cardiac electrical activity [6] both from
surface ECG (which is called VectorCardioGram, VCG) and from
EGM (which is called VectorGram, VGM [1]), and (ii) the estima-
tion of the Transfer Function (TF) between VGM and VCG by us-
ing a dynamic Time Delay artificial Neural Network (TDNN). Four
different methods are proposed and compared for the first step: Prin-
cipal Component Analysis (PCA) [7], Robust Principal Component
Analysis (RobPCA) [8], Independent Component Analysis based on
Second Order statistics (ICASO) [9] and Independent Component
Analysis based on Fourth Order statistics (ICAFO) [10]. A quan-
titative evaluation of the proposed procedure is also proposed, as
opposed to our previous work [1] where the filter estimating the TF
between VGM and VCG was based on a linear time invariant filter.

2. PROBLEM STATEMENT AND BACKGROUND

2.1. Signal model

The problem that we propose to study can be modeled as follows:

x[m] = F(s[m]) + ν[m] (1)

where the outputs {x[m]}
m∈

� , representing the surface ECG, are
considered as an unspecified non-linear function F of the inputs
{s[m]}

m∈
� , representing the EGM data, plus an additive white

noise {ν[m]}
m∈

� . The problem of the surface ECG signal synthe-
sis can thus be approached by a classical two-step method, including
a training step and a synthesis step. The training step aims to iden-
tify the function F ( F̂ , which will be thus specific to each patient)
by using a dataset of x[m] (ECG) and s[m] (EGM) signals, si-
multaneously acquired in an attended laboratory setting during the
implant of the CID. The synthesis step is devoted to the estimation
of surface ECG, x̂[m], by exploiting only the EGM, s[m], and the
estimate, F̂ , of F . It should be noticed that it will be possible to
acquire, in the near future, the set of s[m] signals directly from the
CID by telemetry. Nevertheless, before detailing these two steps, let
us, briefly, introduce the four algorithms used for the extraction of
the 3D cardiac electrical activity and the TDNN architecture, and
justify why these tools are used in our approach.
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2.2. Extraction of the 3D cardiac electrical activity

The VCG is an orthogonal lead system that reflects the electrical ac-
tivity in the three perpendicular directions X, Y, and Z. Although the
12-lead ECG is considered as the reference setup for the analysis of
the cardiac electrical activity, the VCG contains useful information
for some applications [6,11]. Indeed, it is well-known that the VCG
is superior to the ECG in showing phase differences between electric
events in different parts of the heart. In addition, contrary to the stan-
dard 12-lead ECG, the analysis based on VCG loops has been found
to (i) better compensate the changes in the electrical axis caused by
various extracardiac factors [12], such as respiration, body position,
electrode positioning, and so forth, (ii) give a compact representa-
tion of the cardiac electrical activity, minimizing storage needs, and
(iii) provide a solution to the time synchronization problem which
arises in cardiac data. These characteristics of the 3D representation
of the cardiac electrical activity seem to be useful in our case (see
point (i) and (ii) just above). The VCG can be obtained by methods
which establish a transformation from the standard ECG leads to the
VCG domain and vice versa, such as Dower Transform (DT) [13]
and Levkov Transform (LT) [14]. Since such methods do not exist
in the case of EGM, we propose to test and compare different al-
gorithms (PCA, RobPCA, ICASO and ICAFO) to extract the VGM
and the VCG.

2.3. Principal component analysis

PCA is one of the oldest and most popular techniques in statisti-
cal data analysis, features extraction and data compression. The
purpose of PCA is to derive a relatively small number of decor-
related linear combinations (principal components) of a set of
random zero-mean variables while retaining as much of the in-
formation from the original variables as possible. Typically, the
PCA of vector x[m] = [x[m]1, · · · , x[m]N ]T consists in look-
ing for an overdetermined (N ×P ) (i.e. P ≤ N ) orthonormal
linear transform W such that the P components of the vector
z[m] = [z[m]1, · · · , z[m]P ]T = W Tx[m] are mutually uncor-
related. It is straightforward to show that the PCA problem can
be converted to the eigenvalue problem of the zero time-lag co-
variance matrix Rx [0]. Thus, if we denote [e1 . . . eP ]T the eigen-
vectors of Rx [0] corresponding to the eigenvalues (λ1, . . . λP )
where λ1 ≥ . . . ≥ λP , the first principal component of x[m]

is z1[m] = e
T

1x[m]. Likewise, the P -th principal component is
obtained by zP [m] = e

T

P x[m].
In practice, the covariance matrix of the noise ν[m] can not be

precisely estimated, especially in the case where the number of sen-
sorsN is equal to the number of sourcesP . The effect of the additive
white noise cannot be removed in the conventional PCA [7] which
only exploits the zero time-lag covariance matrix Rx [0]. This limi-
tation is considered in [8] where the authors propose, under the as-
sumption of colored components, a new algorithm (RobPCA) which
is unaltered by an additive white noise. More precisely, the idea of
the RobPCA is to search an N × P orthonormal linear transform
W from the eigen-structure of J time-delayed covariance matrices
Rx [τj ], where τj are non-zero positive integers.

2.4. Independent component analysis

The ICA of x[m] = [x[m]1, · · · , x[m]N ]T consists in looking for
an overdetermined (N×P ) mixing matrix A and a P -dimensional
source vector process s[m] = [s[m]1, · · · , s[m]P ]T whose compo-
nents are the most statistically independent as possible so that the
linear observation model below holds:

∀m ∈
�

x[m] = A s[m] + ν[m] (2)

Where ν[m] = [ν[m]1, · · · , ν[m]N ]T is noise vector process inde-
pendent from the source process. In other words, ICA consists in
searching for a (N ×P ) separator matrix Wo such that yo[m] =
Wo

Tx[m] is an estimate of the source vector s[m].
Two classical ICA techniques are exploited in this study. The

second order blind identification algorithm (ICASO) [9], is based on
the joint approximate diagonalization of a set of delayed covariance
matrices of the data. This algorithm seems to be very efficient in the
case of colored sources. The second technique (ICAFO) is based on
Fourth Order (FO) statistics. It explicitly maximizes a contrast func-
tion based on the FO cumulants of the data by rooting successive
polynomials [10]. It should be noted that both techniques require a
prior standardization procedure of the data (the standardization pro-
cedure may be viewed as a mere PCA [10]). This step is also used
in ICA to reduce the dimension of the data.

2.5. Dynamic Time Delay artificial Neural Network

It is well-known that feed-forward artificial Neural Networks
(ANNs) with an input layer, a single hidden layer, and an output
layer may be used as universal function approximators, under very
general conditions for the activation functions [15]. Time Delay
ANNs (TDNN) are a particular implementation of feed-forward
ANNs, in which delayed versions of the input signals are presented
at the input layer of the network. TDNNs have thus an extended
capability for time series processing, with respect to feed-forward
ANNs, as they include a representation of the k past samples of
each input signal. More details on this type of ANN can be found
elsewhere [15].

3. DATABASE

A dataset issued from 14 patients (P1 to P14) is used for evaluating
the performance of the proposed method and for the comparison of
four 3D cardiac electrical activity estimators. The ECG and EGM
were simultaneously recorded with a GE Cardiolab station during
the implant of CIDs with an initial sampling rate equal to 1000 Hz
and then subsampled at 100 Hz and low-pass filtered at 45 Hz. Each
record of the database is composed of 12 standard surface ECG chan-
nels, namely I, II, III, AVR, AVL, AVF, V1, to V6 and four to seven
EGM electrodes depending on CID type. Three different CID types
have been used: a triple chamber defibrillator for patients P1, P5,
P6, P7, P8, P12 and P13, a triple chamber pacemaker for P9, P10
and P14 and a dual chamber pacemaker for patients P2, P3, P4 and
P11. We also observed that nine patients of the database present an
ECG with a sinus rhythm (P1 to P9), whereas two patients (P10 and
P11) present a polymorphic beat sequences. Premature Ventricular
Beats (PVB) are also detected on three patients (P12 to P14).

Each patient’s file is segmented into two blocks: the first one
contains L = 20 heartbeats of concurrent ECG and EGM signals
and is used in the training step, the second block contains Q = 11
beats and is devoted to the synthesis step.

4. PROPOSED METHOD

4.1. Training step

This step can be divided into two sub-steps : i) the estimation of the
3D cardiac electrical activity (VCG and VGM) and ii) the estimation
of the TF between the VGM and the VCG.
Estimation of the VCG and the VGM: Let us consider that x[m]=
[x[m]1,· · ·, x[m]N ]Tm=1,...,M and s[m]=[s[m]1,· · ·, s[m]K ]Tm=1,...,M

where N ≥ 3 is the number of ECG leads, K ≥ 3 is the number
of EGM leads and M is the number of records. This estimation is
performed by using one of the four algorithms a (a represents one
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of the four estimation algorithms) described earlier (PCA, RobPCA,
ICASO and ICAFO) on xECG[m] and xEGM [m] so that the fol-
lowing results hold:

zV CG[m] = W
a
V CG

T

x[m]

zV GM [m] = W
a
V GM

T

s[m] (3)

Only the three principal component (for PCA and RobPCA) and
three independents components (for ICASO and ICAFO) are ana-
lyzed. This provides a (N×3) matrixW a

V CG and a (K×3) matrix
W a

V GM .
Estimation of the TF between the VGM and the VCG: Three differ-
ent MISO (Multi-In Single-Out) systems, M1, M2 and M3, between
the three row input vector zV GM [m] and each row of the output
vector zV CG[m] are estimated in this step. For each patient, three
TDNN are trained by using the VCG and the VGM issued from 20
heartbeats of concurrent ECG and EGM. Each TDNN is defined with
an input layer ofNI = 3×k samples, a hidden layer ofNH neurons
with a sigmoid activation function and one linear output neuron. Dif-
ferent structures are tested for the TDNN, by changing k and NH .
The best performance (trade-off between quality of reconstruction
and computing time of the training step) is obtained for k = 4 sam-
ples at the resampled frequency of 100 Hz and NH of around 50
neurons. In this paper, the approach proposed by D. MacKay [16]
and implemented in Neural Network Toolbox of Matlab is used to
improve the generalization of our procedure and to avoid overfitting.

4.2. The synthesis step

Let’s suppose that we only observe the EGM of Q successive heart-
beats (in our case Q = 11). The synthesis step, devoted to the es-
timation of surface ECG by exploiting the EGM and different pa-
rameters identified in the training step, is divided in three parts: (i)
the linear transforms W a

V GM (for all four methods) are applied on
EGM, which provides us the (3 × M ′) VGM matrix (where M ′

is the number of records of the EGM used in the synthesis step),
(ii) the (3 × M ′) VCG matrix is estimated by using M1, M2 and
M3 systems and (iii) the surface ECG is obtained by multiplying the
pseudo-inverse of each linear transform W a

V CG with the estimated
VCG.

5. RESULTS

5.1. Quantitative performance evaluation

In this section, we compare the performance provided by our pro-
cedure, when we use the four different methods (PCA, RobPCA,
ICASO and ICAFO) proposed to extract the 3D cardiac electrical
activity, in the case of patients with sinus rhythm, patients with poly-
morphic beat sequences and those with PVB. We also evaluate the
quality of the 12-lead ECG reconstruction as a function of the num-
ber and location of EGM electrodes exploited by our procedure. This
last point is investigated in this paper in order to evaluate the behav-
ior of our procedure in some practical situations where the CIDs
provide only three electrodes.

Figure 1 (a), (b) and (c) show examples of real surface ECG
(blue solid line) and synthesized ECG (red dashed line) for a patient
with sinus rhythm (P5), a patient with polymorphic beat sequences
(P11) and a patient with PVB (P13), respectively. In these examples,
the synthesized ECG is obtained from all the available EGM elec-
trodes and by using PCA to extract the VCG and the VGM. Clearly,
for P5 and P11, the synthesis errors are practically insignificant. Re-
garding P13 our procedure seems to provide less reliable estimates
for the abnormal beat. However, the behavior of our procedure is
promising since the synthesized pathological morphologies are very
different from sinus beats and the ECGwave durations are preserved.

Thus, even if our procedure is not able to exactly reproduce some
beat morphologies, it can be used to detect the presence of abnormal
ECG beats. In addition, the preservation of the ECG wave durations
can be particularly useful to characterize certain pathologies from
synthesized beats.
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Fig. 1. Examples of the synthesized ECG (Real surface ECG: blue
solid line and synthesized ECG: red dashed line): (a) patient with si-
nus rhythm (P5), (b) patient with polymorphic beat sequences (P11)
and (c) patient with PVB (P13).

In order to compare the quality of the 12-lead ECG synthesis
of our procedure obtained by using the four estimators of the 3D
cardiac electrical activity as a function of the number of EGM elec-
trodes, our procedure is applied to all the database by exploiting:
i) all the available EGM electrodes and ii) three EGM electrodes
(those commonly available on triple chamber pacemakers and triple
chamber defibrillators [1]). Figure 2 (a) shows that, for all patients,
the behavior of the PCA, RobPCA, ICASO and ICAFO using all
EGM is equivalent. The same result is also observed when only three
EGM are used (figure 2 (b)). Another interesting result is the equiv-
alent performance obtained using three EGM in comparison to those
obtained exploiting all available EGM. Figures 2 (a) and (b) show
also the very good behavior of our procedure both for the patients
with sinus rhythm and with polymorphic beat sequences (correlation
coefficient between the real ECG and the synthesized ECG is above
0.95). For patients P12, P13 and P14, the proposed procedure seems
to be less effective in comparison to other patients (correlation co-
efficient is about 0.84). This result is essentially due to the fact that
P12, P13 and P14 present PVB, having different morphologies.
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Fig. 2. Correlation coefficient between real ECG and synthesized
ECG, for each patient, using PCA, RobPCA, ICASO and ICAFO:
(a) exploiting all the available EGM electrodes and (b) exploiting
three EGM electrodes.
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5.2. Comparison of the non-linear filter and the linear filter

As shown in the previous section, the behavior of our procedure,
when using PCA, RobPCA, ICASO and ICAFO to estimate the 3D
electrical cardiac activity, can be considered equivalent. Thus, us-
ing the PCA 3D cardiac activity estimator, we propose to compare
the influence of the TF estimation (linear Wiener filter [1] and the
TDNN) between the VGM and the VCG.

It appears in figure 3 that the non-linear method leads to better
results. Indeed, for all the database and whatever the number of
EGM leads (figure 3 (a) and figure 3 (b)), correlation coefficients of
the non-linear method lie between 0.78 and 0.99, whereas correlation
coefficients of the linear filtering method lie between 0.6 and 0.94.
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Fig. 3. Comparison of the non-linear filtering methods and the linear
filtering method: (a) exploiting all the available EGM electrodes and
(b) exploiting three EGM electrodes.

6. DISCUSSION AND CONCLUSION

We propose in this study a patient-specific method to synthesize a
standard 12-lead ECG from EGM. The method is based on the 3D
representation of the intracardiac (VGM) and the surface (VCG)
electrical activity. Based on the orthogonal characteristic of the
VCG, we compare four different orthogonalization algorithms,
namely PCA, RobPCA, ICASO and ICAFO. The obtained results
exhibit that the performance of the four algorithms are equivalent.
This can be explained by the fact that the processing of the eigen-
values of the covariance matrix Rx of the 12-lead ECG shows that
signal energy is only concentrated on three main components. All
these results strengthen the idea that any orthogonalization algorithm
can be able to estimate the 3D cardiac electrical activity. We also
reported (see section 5.2) that the non-linear filter is more effective
than the linear filter.

Our procedure presents good behavior both for patients with si-
nus rhythm and patients with polymorphic beat sequences. Regard-
ing the patients with PVB, our method provides promising results.
Preliminary results show that the synthesized abnormal morpholo-
gies are very different from sinus beats. In addition, the ECG wave
durations of the normal/abnormal beat seem to be preserved, which
is useful for a diagnosis purpose (such as the characterization of bun-
dle branch block). Another interesting result shows that the perfor-
mance of our procedure by using only three EGM electrodes or a
high number of EGM are quasi-identical. This last result is very in-
teresting in the practical case where most of CIDs provide only three
implantable electrodes.
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