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ABSTRACT

The human neural responses associated with cognitive events,

referred as event related potentials (ERPs), can provide reli-

able inference for target image detection. Incremental learn-

ing has been widely investigated to deal with large datasets.

To solve the problem of data growing over time in cross ses-

sion studies, we apply an incremental learning support vec-

tor machines (SVM) method on single-trial ERP detection for

identifying targets in satellite images. We implement the in-

cremental learning SVM by keeping only the support vectors,

instead of all the data, from the previous sessions and incor-

porating them with the data of the current session. Thus the

incremental learning dramatically reduces the computational

load. The results demonstrate that the incremental learning

ERP detection system performs as well as the naive method,

which uses only the current training session, and the batch

mode, which uses all training data. Furthermore, it is more

computationally efficient, which allows it to better cope with

a continuous stream of EEG data.

Index Terms— Brain computer interface, Event-related

potential, Incremental learning, Support vector machine, Tar-

get detection

1. INTRODUCTION

Incremental learning paradigm, as opposed to the batch learn-

ing paradigm in which all training examples are provided at

once for optimization, is a training mode where only a few

training examples are added at a time to update model pa-

rameters. The naive learning paradigm simply uses examples

from a single session to train a classifier. The motivation of

incremental learning is to deal with very large training sets or

non-stationary data. An important advantage of incremental

learning is that it allows the algorithm to combine additional

available training examples without having to retrain classi-
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Fig. 1. Images of ERP associated with targets (left) and non-

ERP associated with distractors (right) on channel Pz. Time-

zero corresponds to the stimulus onset in each trial. The bot-

tom traces are the EEG signals averaged over trials.

fiers from scratch. This has numerous benefits, including sav-

ing a substantial amount of storage space and speeding the

computation up. Therefore incremental learning algorithms

have been investigated in many applications. Since the emer-

gence of support vector machines (SVM) in the 1990s, incre-

mental learning of SVMs has been investigated intensively

[1, 2]. In [1], Syed proposed an approximate solution to the

problem of incremental SVM learning. An SVM was trained

on new data by discarding all previous data except the sup-

port vectors, which were combined with the new subset of

data. Cauwenberghs and Poggio first proposed an exact SVM

incremental algorithm [2]. It used an online recursive algo-

rithm for SVM training and updated an optimal solution of the

training one vector at a time. Compared with Cauwengerghs’s

work, Syed’s method is more straightforward and easier to

implement. Here we apply Syed’s version of the incremental

leaning algorithm [1] to very large training sets in the field

of electroencephalography (EEG) evoked potential detection

for identifying targets in satellite images. EEG evoked re-

sponses have drawn a lot of attention in the field of cogni-

tive neuroscience. The neural responses associated with spe-

cific cognitive events are referred to as event-related poten-

tials (ERPs). Recently researchers began to exploit human

brain signals elicited by perceptual judgments as the basis for

target image detection [3, 4]. They try to detect the ERP
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patterns from the EEG data that indicate whether or not an

image seen briefly by a human subject contains a target. An

example of ERP detection is shown in Figure 1. A more re-

cent study indicated that the task of distinguishing the target

images from distractor images (images without targets) could

be achieved via single-trial ERP detection [5]. Our efforts

have focused on the development of an image triage platform

that uses single trial ERP detection to flag prospective targets

within large image sets presented to users at rates of several

images per second.

The main challenges of single-trial ERP detection are the

high data dimensionality and the scarcity of labeled EEG data.

Ideally, we would collect large amounts of data from each

subject during a single protracted session. However, this is

both monotonous and time consuming. When multiple EEG

measurements are obtained from each individual at different

times and possibly under changing experimental conditions,

we cannot perfectly duplicate the conditions under which pre-

vious measurements were taken. Hence, there are consid-

erable variations of the measurements from session to ses-

sion. To capture the range of variation that can be expected

in EEG data, we train classifiers based on the data aggregated

across multiple sessions. Our previous cross-session experi-

ments showed promising results for training the SVM in batch

mode [6]. However, such batch training is computationally

intensive. Hence, it is infeasible for real-time systems.

Here we apply an incremental learning SVM for cross ses-

sion ERP detection. Our motivation is based on the fact that

the SVM algorithm is able to summarize the data in the com-

pact form of support vectors (SVs). The incremental learn-

ing approach (which propagates only SVs to the next training

session) is compared with the naive learning method (using

the current training session of data for training) and the batch

learning approach (using all training data). The results show

that the incremental learning approach performs better than

the naive method and performs as well as the batch mode, but

requires substantially less computational load than the batch

method.

2. METHODS

2.1. Data Preparation

Four male graduate students ranging in age from 27 to 35

were recruited for the study. The subjects performed target

detection by clicking on a button as soon as they saw a target.

At the same time we recorded their EEG signals with a 32-

channel Biosemi system. The sampling rate was 256Hz. The

images were presented at the very high rate of 100 ms/image

using the rapid serial visual presentation (RSVP) paradigm

[4]. The RSVP paradigm consists of showing subjects a

sequence of images. In our study each sequence contains

dozens of images and at most one of these images contains a

target We conducted the same data preprocessing as in [7] to

extract the EEG data. The raw EEG data were segmented into

task-relevant epochs. Each epoch consisted of a short segment

of EEG (a window from the stimulus onset to 500ms after the

stimulus onset). Each epoch represented the spatiotemporal

electrical activity elicited in repones to a single image. The

32-channel data in each epoch were eventually concatenated

to form a feature vector and the processed EEG measurements

were subjected to the classifier.

To assess cross session performance, data collected at dif-

ferent times and under different experimental conditions were

utilized. The subjects performed target detection tasks in the

RSVP paradigm. Data were collected from each subject dur-

ing one morning session and one afternoon session each day

on five consecutive days. Each session contained 200 trials.

Each trial contained around 45 images and was about 5 sec-

onds. There were 75% of the trials containing a single target

instance. Images were drawn with replacement and shown in

a random order. We simulated a realistic scenario. We used

only the current session as the testset and used all previous

sessions as the sessions included in the current training set

for the classifier. For instance, for batch learning we trained

on session 1(S1)and tested on S2; then we trained on S1+2

and tested on S3 and so on until we trained on S1+2+...+9

and tested on S10. The aggregated data were subjected to the

classifier to evaluate the cross session performance.

2.2. The SVM algorithm

The SVM [8, 9] is a widely used statistical learning al-

gorithm. The main idea of the SVM algorithm is to map

input observations to a high dimensional space via kernel

tricks and then optimize the decision boundary by construct-

ing a maximum-margin hyperplane. For a classification prob-

lem, given n data samples xi and class lables yi, where

i = 1, ..., n, the hyperplane is defined as

wT x + b = 0, (1)

where w is the normal to the hyperplane and b is a bias. The

optimization problem can be formulated as the minimization

of

f(w, ξ) =
1
2
‖w‖2 + C

l∑

i=1

ξi, (2)

subject to the constraints,

yi(xiw + b) ≥ 1− ξi

ξi ≥ 0 ∀i, (3)

where ξi are positive slack variables and the cost parameter

C can be chosen by the users. A larger C is associated with

assigning a higher penalty to errors. By solving a quadratic

programming optimization problem, the SVM solutions are
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achieved. The following is the decision function,

f(x) = sgn[
m∑

i=1

yiαiK(x,xi) + b]. (4)

where αi are the Lagrangian multiplier for each data sam-

ple, K(x,xi) is the kernel function and m is the number of

SVs. The SVs, which are the data points lying at the border

of the margin, have non-zero optimal solutions for their coef-

ficients in the final discriminant, whereas the coefficients for

other data points converge to zero. Usually the SVs are only

a small fraction of the original training samples. The kernel

parameters, such as kernel width, σ2, in the Gaussian kernel

can be chosen by the users.

We apply a Gaussian kernel SVM on single-trial ERP de-

tection. The inputs of the classifier are the EEG measure-

ments and the outputs of the classifier are the likelihood val-

ues, which are used to label the EEG epochs according to

whether or not they contain an ERP pattern. We adopt 10-fold

cross validation on the training session to adjust two regular-

ization parameters of the SVM: the kernel width of Gaussian

kernels, σ2, and the cost parameter, C, for each subject. We

set a discrete set of the kernel size σ2 range from 0.01 to 500
and a discrete set of the cost parameter C range from 1 to 106.

We vary σ2 and C over the grid formed by the selected val-

ues above. The SVM classifier is trained using the σ2 and C
giving the best validation performance.

2.3. Incremental Learning for ERP Detection

The essential property of the SVM algorithm is that only the

SVs contribute to the decision boundary and the remaining

training examples may be regarded as redundant. Based on

this property, Syed et al. proposed an incremental learning

with SVM to deal with large datasets [1]. They segmented a

huge dataset into small partitions to available memory, and in-

crementally trained the SVM with the small partitions. Their

results demonstrated that the SVs selected by the SVM was

a minimal set. Any further removal of data samples signifi-

cantly deteriorated the performance because the loss of SVs

led to loss of vital information about the class distribution.

We apply incremental learning for cross session ERP de-

tection. The basic idea of the incremental learning ERP de-

tection is to train an SVM on a subset of training EEG data.

The SVs found from training on each subset are preserved

and combined with training samples from another data set.

For the cross session EEG data in Section 2.1, there are 10
datasets, S1 to S10 . Instead of training on all previous data

as S1, S1 ∪ S2, ..., S1 ∪ ... ∪ S10 , we preserve the SVs from

the previous training sets and discard the redundant data. Let

Vi represent the SVs in session i. We train using S1, V1 ∪ S2,

V1,2 ∪S3,..., V1,2 , ...,9 ∪S10.

Fig. 2. The SVM test performance in terms of area under

ROC (AUC) as a function of the number of training sessions

for four subjects. The solid curve is the batch learning (uses

all previous data for training) performance and the dash curve

is the incremental learning (only the SVs are propagated) per-

formance. The naive learning performance is the first dot for

one training session.

3. RESULTS

Because the cost of missing a target in this application is ex-

tremely high, we adopt area under the receiver operating char-

acteristic (ROC) curve (AUC) and minimum false alarm rate

at zero miss (MFAR) to estimate the quantitative efficacy. The

evaluation of incremental learning on single-trial ERP detec-

tion is conducted on the cross session dataset.

The ERP detection performance of the incremental learn-

ing method on the cross session data is compared with those

of the batch learning mode and the naive learning mode. Fig-

ure 2 shows the cross-session ERP detection performance in

terms of the AUCs for four subjects. The incremental learn-

ing SVM where only the SVs are propagated achieves sim-

ilar AUCs as the batch approach for all subjects. The AUC

exhibits a generally increasing trend with the inclusion of ad-

ditional training data from subsequent sessions for four sub-

jects. The incremental learning sessions have higher AUC

than the naive learning using only one training session in most

cases. Figure 3 shows the cross-session ERP detection per-

formance in terms of the MFARs for four subjects. The incre-

mental learning SVM achieves similar MFARs as the batch

approach for all subjects. The MFAR exhibits a generally de-

creasing trend with the inclusion of additional training data

from subsequent sessions for four subjects. The incremental

learning sessions have lower MFAR than the naive learning in

most cases. The computational load in terms of the number

of training data of the incremental learning is compared with

that of the batch mode. Figure 4 shows the number of train-
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Fig. 3. The SVM test performance in terms of minimum false

alarm rate at zero miss (MFAR) as a function of the number of

training sessions for four subjects. The solid curve is the batch

learning (uses all previous data for training) performance and

the dash curve is the incremental learning (only the SVs are

propagated) performance. The naive learning performance is

the first dot for one training session.

ing samples for subject 1 for both incremental learning and

batch learning. The other three subjects have similar results.

The incremental learning using only SVs, which is a small

fraction of all data, substantially decreases the computational

load after the aggregated data grow over time.

4. DISCUSSION

This research uses an incremental learning method for single-

trial ERP detection on the task of target image detection. The

incremental learning method using only SVs performs better

than the naive method and achieves a performance similar to

the batch method for cross session ERP detection with sub-

stantially less computational load. Results show the feasibil-

ity of the incremental learning on the ERP-based target de-

tection system. With more training samples, the cross session

methods outperform the naive method. The results demon-

strate the inter-session variances do not deteriorate the per-

formance. The incremental learning performs as well as the

batch mode due to the fact that only the SVs contribute to the

decision boundary. Since the incremental learning compacts

the previous training data to the SVs and then incorporates

only the SVs with the new dataset, it is more computationally

efficient than the batch learning method. In the future we will

investigate an exact online method, based on the incremental

SVM method by Cauwenberghs and Poggio [2], to construct

the solution recursively, one point at a time on the single-trial

ERP detection.

Fig. 4. The number of training samples for different num-

ber of training sessions for subject 1 using the batch learning

(uses all previous data for training) and the incremental learn-

ing (only the SVs are propagated)
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